
 

 

 

 

JME 
Journal of Mining & Environment, 
Vol.8, No.2, 2017, 227-235. 

DOI: 10.22044/jme.2015.558 
 

3D gravity data-space inversion with sparseness and bound constraints 

 
M. Rezaie

1*
, A. Moradzadeh

2
 and A. Nejati Kalate

1 

1. School of Mining, Petroleum & Geophysics Engineering, Shahrood University of Technology, Shahrood, Iran 

2. School of Mining Engineering, College of Engineering, University of Tehran, Tehran, Iran  

 
Received 11 November 2015; received in revised form 26 December 2015; accepted 30 December 2015 

*Corresponding author: mohammad1rezaie@gmail.com (M. Rezaie). 
 

Abstract 

One of the most remarkable basis of the gravity data inversion is the recognition of sharp boundaries 

between an ore body and its host rocks during the interpretation step. Therefore, in this work, it is attempted 

to develop an inversion approach to determine a 3D density distribution that produces a given gravity 

anomaly. The subsurface model consists of a 3D rectangular prisms of known sizes and positions and 

unknown density contrasts that are required to be estimated. The proposed inversion scheme incorporates the 

Cauchy norm as a model norm that imposes sparseness and the depth weighting of the solution. A physical-

bound constraint is enforced using a generic transformation of the model parameters. The inverse problem is 

posed in the data space, leading to a smaller dimensional linear system of equations to be solved and a 

reduction in the computation time. For more efficiency, the low-dimensional linear system of equations is 

solved using a fast iterative method such as Lanczos Bidiagonalization. The tests carried out on the synthetic 

data show that the sparse data-space inversion produces blocky and focused solutions. The results obtained 

for the 3D inversion of the field gravity data (Mobrun gravity data) indicate that the sparse data-space 

inversion could produce the density models consistent with the true structures. 

 

Keywords: Gravity Data, Data-Space Inversion, Sparseness Constraint, Bound Constraint, Lanczos 

Bidiagonalization, Mobrun. 

1. Introduction 

Gravity measurements have been used in a wide 

range of investigations in geoscience, especially 

in mineral exploration [1-4]. Gravity-measured 

data are the vertical components of the Earth’s 

gravitational field. The inversion of gravity data is 

an important step in the quantitative interpretation 

of the practical data since construction of the 

density contrast models significantly increases the 

amount of information that can be achieved using 

the gravity data [5]. Inversion is defined as a 

mathematical technique that automatically 

constructs a subsurface physical property model 

using the measured data by incorporating a priori 

information. The recovered models must be 

capable of predicting the measured data 

adequately [6]. Inversion of the potential field 

data such as gravity data suffers from  

non-uniqueness since, according to the Gauss's 

theorem, there are infinite equivalent source 

distributions that produce the same measured 

gravity field [7]. 

The standard approach used to obtain a unique 

solution is to use an additional (priori) 

information about the problem. The type and 

amount of the priori information must be 

determined to resolve the non-uniqueness of the 

solution [8]. There are numerous forms 

(geological, geophysical, and mathematical) of the 

priori information that enable us to incorporate 

information into the inversion process [9]. Some 

of them include the smooth and small model 

inversion [10, 5]; focused inversion [11, 12]; 

building models by growing source bodies [13]; 

inversion using different mathematical model 

forms [14]; covariance-based inversion [15]; 

stochastic lithology-based inversion [16]; 
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structural inversion using linear programming 

[17]; inversion using an adaptive mesh [18]; data-

space inversion with sparseness constraints [19]; 

and stochastic inversion using co-kriging [20]. 

In mineral exploration, one of the most 

remarkable basis of a potential field data 

interpretation concerns the detection of sharp 

boundaries between an ore body and its host 

rocks. Therefore, an algorithm producing a 

compact solution such as the focusing inversion 

algorithm, proposed by Zhdanov (2002) [21], and 

the one proposed by Pilkington (2008) [19] with 

sparseness constraints is the natural choice [9]. 

Data-space inversion with sparseness constraints 

was developed by Pilkington (2008) [19], 

originally for a 3D inversion of the magnetic data. 

In this algorithm, the solution is obtained with 

sparseness and just positivity constraints using the 

conjugate gradient iterative solver. The algorithm 

was modified later for a 3D inversion of the 

gravity data using a reference model [9]. 

In the 3D inversion of potential field data, a hard-

constraint prior information of the physical 

property values is available. For instance, the 

physical property may be known to lie within 

particular bounds. We need to include this 

information into the inversion [22]. In the gravity 

inverse problem, bound constraint can improve 

the solution and make it more compact [23]. 

Therefore, implementation of negative bound 

constraint is necessary in the inversion of gravity 

data. In this case, modification of the current data-

space inversion algorithm is necessary. It has been 

shown that Lanczos Bidiagonalization [24] is a 

faster iterative solver rather than the conjugate 

gradient (CG) method in the inversion of potential 

field data [25, 26]. 

In this work, at first, some modifications were 

applied on the algorithm of data-space inversion 

with sparseness constraints so that the general 

bound constraints can be applied for the 3D 

inversion of gravity data. For applying lower and 

upper bound constraints on the model parameters, 

a parameter transformation function that has 

previously been used in inversions for electrical 

conductivity and density data was applied [27, 

28]. Then Lanczos Bidiagonalization was 

employed as a fast iterative solver in the 3D 

gravity data-space inversion with sparseness and 

bound constraints to speed up the required 

computation. 

2. Methodology 

To perform inverse modeling, the subsurface 

under the survey area is discretized into 

rectangular prisms of known sizes and positions. 

The density contrasts within each prism is an 

unknown parameter to be estimated by solving the 

inverse problem. 

2.1 Forward modelling 

Here, the formula given by Blakely (1996) [7] 

was used to compute the gravity response of each 

prism after discretization of the subsurface by 

rectangular prisms. If the observed gravity 

anomalies are caused by n subsurface rectangular 

prisms, the gravity anomaly at the ith field point is 

given by: 





n

1j
jiji ,ρGg  i 1, ,m   (1) 

where ig  is the gravity observation at the ith 

point, j  is the density contrast of the jth prism, 

and ijG  relates the ith datum of a unit density to 

the jth subsurface rectangular prism. In the matrix 

notation, Eq. (1) can be written as: 

, ,   m n m nG ,G R R Rm d d m  (2) 

Here, G  is the forward operator matrix (also 

called the sensitivity matrix) that maps the 

physical parameters space into the data space. The 

vector m  denotes unknown model parameters, 

and d  is the data vector that is given by the 

measurements ( ig ). There are some errors in the 

measurement data because of the noise that is 

assumed to be uncorrelated and have Gaussian 

distribution. Thus: 

mR,G  eedm  
(3) 

where e  is the vector of data error, and 

edd obs  is the vector of observed data. The 

main purpose of the gravity inversion is to find a 

geologically credible density model (m) that 

predicts the measured data ( obsd ) at the noise 

level [29]. 

2.2 Inverse modelling 

To achieve a solution to Eq. (3), minimization of 

the following total objective function ( ) is 

required [19]: 

     
     

T
1

obs obs 0
G D G Cd m d m m m  (4) 

Expression D  is the data weighting matrix given 

by 
1

1 m
D diag(1/ , ,1/ )    , where 

i
 

stands for the standard deviation of the noise in 
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the ith datum, and 
0

m  is the prior or starting 

model. The model objective function C( )m  

comprises two parts, the depth-weighting function 

 Z m  and a model norm term  P m . 

Due to the lack of depth resolution in the 

inversion of gravity data, a depth-weighting 

function was introduced by Li and Oldenburg 

(1998) [5]. It counteracts the spatial decay of the 

potential data with the depth by giving more 

weight to the rectangular prisms (cells) as depth 

increases. 

 
1

Z
z

m  (5) 

where z is the depth of each rectangular prism 

(cell), and   is equal to 3 in the magnetic case 

and to 2 in the gravity case [5, 10]. 

Sparseness is imposed on the model (m) using the 

Cauchy norm [30]: 

   
n

2 2

i
i 1

P ln 1 m /


  m  (6) 

where, 
i

m  is the model parameter of the ith cell. 

The level of sparseness is controlled by the 

parameter .  P m  becomes small when more of 

the parameters 
i

m  are smaller than  . This 

condition make the solution sparse and focused. If 

  is made large compared with all of the model 

parameters (m), then  P m  has an effect similar 

to the minimum-norm solution, and has no 

influence on the sparseness of the model, and 

therefore, the model becomes smooth. Thus a 

judgment is required to determine an appropriate 

value for   for an inversion. This involves 

inspection of the solution visually and deciding 

whether it is geologically plausible [19]. 

The total objective function in Eq. (4) can be 

minimized in the data space by the model 

correction at iteration k as 
k

Δm  [31]: 

 
 



  

  

    

1
T T T T

k k k k k

obs k

Q S G GS Q S G D

G GS

k k 0

k k 0

Δm m m

d m m m

 (7) 

where 
k

m is the current model, and the constant  

is a step length variable that is chosen so that each 

model correction is accepted only when the RMS 

error of fit is reduced. Initially, it is set to unity, 

and then it is reduced by a factor of 3 until a 

reduction in the fit is achieved. 
k

Q represents a 

diagonal matrix with elements 

 2 2 2

ii i i
Q z 1 m /   , wherein 

i
z  is the depth to 

the ith rectangular prism or voxel. Expression 
k

Q  

represents differentiating Eq. (6) with respect to 

the model parameters and imposes depth 

weighting and sparseness constraints. 
k

GS denotes 

the Jacobian matrix, where 
k
S is a diagonal matrix 

that imposes bound constraints (explained in the 

next section). 

 The forward problem is linear but comprising the 

model objective function and the parameter 

transformation leads to a non-linear problem that 

requires an iterative solution. The iterations 

proceed until the RMS misfit reaches an 

acceptable level or the model corrections become 

small enough [19]. For simplicity, we can write 

Eq. (7) in a compact form, as follows: 

T T

k k k
Q S G 

k
Δm b  (8) 

where: 

 
 



  

    

1
T T

k k k k

obs k

GS Q S G D

G GS
k k 0

b

d m m m
 (9) 

For a large-scale problem, 
k
b is found at each 

iteration by solving an m × m inverse problem in 

Eq. (9) using the Lanczos Bidiagonalization 

method [24], as follows: 

k k k
Af b  (10) 

where 

 T T

k k k k
A GS Q S G D   (11) 

and 

k obs k
G GS      k k 0

f d m m m  (12) 

Iterative solvers algorithms provide very efficient 

tools for solving large and possibly ill-conditioned 

systems such as Eq. (10). The Lanczos 

Bidiagonalization and Conjugate Gradient 

methods are two iterative solvers that have been 

applied in the inversion of potential field data. 

However, the Lanczos Bidiagonalization method 

is faster and more efficient than the conjugate 

gradient method [22, 25, 26]. Therefore, we used 

the Lanczos Bidiagonalization method to obtain 

k
b in Eq. (10). 
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2.3. Physical bound constraints 

Implementation of physical bound constraints can 

improve the results of inverse problems in 

potential field data, and is effective in reducing 

solution ambiguity [5, 10, 23]. Various techniques 

such as the logarithmic barrier approach [22], 

gradient projection approach [32], and transform 

function approach [19, 33, 34] have been applied 

in different inversion schemes to implement this 

constraint. Here, we preferred to apply the last 

method in the data space inversion algorithm to 

convert the physical property parameter to a 

generalized one x x(m). Then the inversion 

procedure can be solved with respect to vector x  

in the full numerical space, and the final-acquired 

model vector m is restricted in the given limits. 

There are many choices for the transform 

function, e.g. the logarithmic transform for 

positive constraints or the square function for non-

negative constraints. We used a more generic 

transform to introduce the bound information, 

which can be written as [28]: 






k k k

k

k

a c exp(hx )
m (x)

1 exp(hx )
    

k
x   (13) 

where 
k
a  and 

k
c are the specified lower and 

upper limits for  k k k
m a ,c , respectively, and 

h is a variable controlling the steepness of the 

transformation. These parameters can be easily 

represented in the vector forms a, c, and h for the 

cases where bound information is provided for 

each cell in detail. Differentiating Eq. (13) with 

respect to x yields: 

 

 
k k kk

2

k
k

c a exp(hx )m

x 1 exp hx




  
 

 (14) 

This derivative is always positive and bounded 

[33]. For imposing bound constraints in Eq. (7), 

k
S  is defined as a diagonal matrix with elements, 

 

 
k k k

ii 2

k

c a exp(hx )
S

1 exp hx




 
 

. Therefore, at each 

iteration, 
k
x  and 

k
x  are calculated by solving 

Eq. (7), and then the bounded model parameters 

(
k

m ) can be achieved by Eq. (13). 

3. Synthetic example 

To evaluate the reliability of the introduced 

method, we inverted the synthetic gravity data of 

the model shown by Figure 1(a). This model is 

made by two different rectangular bodies (Table. 

1), having a density of 1.0 g/cm
3
. The density of 

uniform background was zero. The data was 

collected over an area of 1000 × 1000 m with a 

sample spacing of 25 m. There were 1600 data 

points that were contaminated by 3% of random 

noise. 

The subsurface was discretized into 40 × 40 × 20 

= 32000 rectangular prisms with a size of 25 m in 

the x, y, and z directions. 

 
Table 1. Parameters of synthetic model. 

Model number x×y×z dimensions (m) Depth to top (m) True density (g/cm
3
) 

(1) 250×250×250 ‒50 1 

(2) 500×125×200 ‒100 1 

 

 
Figure 1. Perspective view of synthetic model (a). Gravity anomaly produced by synthetic model with 3% 

Gaussian noise (b). 
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The inverse problem was solved according to the 

procedure described in the preceding section. The 

maps of depth slices and cross sections through 

the recovered model from the sparse data space (h 

= 1 and 0.05 ) inversion algorithm are shown 

in Figure 2. The inversion used a starting model 

(
0

m ) of zero, and yielded an RMS error of about 

3%. Therefore, the result is acceptable with regard 

to the noise. The sparse solution is blocky, and 

defines two bodies precisely. 

 

 
Figure 2. Plan sections through recovered density model obtained from inversion of gravity anomaly by the 

proposed method at z = ‒50 m (a) and z = ‒150 m (b). Cross-section slices of the density model at Y = 800 m (A-

A’) (c) and X = 500 m (B-B’) (d). 

 

Sparse solution defines the depths to the top and 

bottom of deep bodies adequately. However, the 

results obtained indicate acceptable reconstruction 

of the synthetic multisource anomaly at different 

depth levels below the surface and in vertical 

slices at Y = 800 m (A-A’) and X = 500 m (B-B’). 

The recovered bodies in the model along these 

cross-sections are adequately matched with the 

real location of the synthetic bodies. 

4. Application to field data 

The developed inversion algorithm was applied to 

the field data acquired at the Mobrun sulfide body 

in Noranda, Quebec, Canada. The gravity 

anomaly is associated with a body of base metal 

massive sulfide, which has been hosted by 

volcanic rocks of middle Precambrian age. The 

density contrast of the orebody with host rock is 

about 1.9 (g/cm
3
) [35]. The original gravity data 

was collected on 60 m spaced lines with stations 

of 30 m. The dataset consists of a regular grid of 

38 × 33 data that is spaced 20 m× 20 m in the x 

and y directions, respectively. Figure 3(a) shows 

the gravity anomaly map constructed using the 

dataset. 

For a 3D inversion of data, the subsurface of the 

studied area was discretized with 38 × 33 × 13 

cells of 20 m in the x, y, and z directions, 

respectively. The data was inverted using the 

proposed algorithm with 0 g/cm
3
 as the lower 

bound and 1.9 g/cm
3
 as the upper bound. 
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Figure 3. Bouguer anomaly map of Mobrun deposit (a), depth slice at Z = ‒45 m through recovered density 

model obtained from the inversion of gravity anomaly (b), cross-section slices of density model at Y = 330 m (B-

B’) (c), and X = 370 m (A-A’) (d). 

 

The depth slice map (at Z = ‒45 m) of the density model is shown in Figure 4(b), which shows that this 

sulfide body elongates from NW to SE. In Figure 4 (c and d), two cross-sections (at X = 370 m and Y = 330 

m) of the recovered density model are shown. The 3D view of the inversion model for the Mobrun sulfide 

body considering a density cut off 0.8 g/cm
3
 is shown in Figure 4. 

 

 
Figure 4. 3D view of inversion result at Mobrun sulfide body for a cut-off equal to 0.8 g/cm

3
. 
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According to the results obtained, the depth to the 

top of the body was about 20 m, and it extended to 

the depth of more than 180 m. The location of the 

sulfide body and the mineralized zone were 

determined by drilling some boreholes. According 

to the drilling data, the depth to the top of body 

was about 17 m, and the ore body was extended to 

187 m (Figure 5) [35]. Thus we obtained a good 

solution in agreement with the results of drilling 

and those obtained by Aghajani et al. (2009) [36]. 

 

 
Figure 5. Center section of Mobrun sulfide body with geophysical interpretation [35]. 

5. Conclusions 

We developed a 3D gravity data inversion 

approach that is capable of carrying out the 

optimization process in the N-dimensional data 

space, and incorporates a sparseness constraint. 

This leads to a smaller dimensional system of 

equations to be solved, and avoids the need for 

specifying any regularization parameter. Data 

space inversion leads to a significant reduction in 

the computation time compared with a model 

space approach because the number of data is 

usually less than the number of model parameters 

in a 3D gravity data inversion. This procedure 

further speeds up the inversion process using the 

fast Lanczos Bidiagonalization iterative 

algorithm. Addition of the Cauchy norm 

emphasizes the sparseness of the inverted model 

character. A logarithmic transformation was 

applied to impose bound constraints thorough the 

inversion process. A synthetic noise contaminated 

data test shows that the sparse, data-space gravity 

inversion produces a focused solution that defines 

the subsurface bodies precisely. Finally, the 

results of the 3D inversion of a real gravity data 

set from Mobrun sulfide body by the proposed 

inversion algorithm are in good agreement with 

those provided by the drilling and geological data. 
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 و کران محدود با قیدهای پراکندگی ای گرانی در فضای دادههی دادبعد سهسازی وارون
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 چکیده:

این بندابر  ؛اسدت  رندده یدربرگهای ها، تشخیص دقیق مرزهای بین ماده معدنی و سنگهای گرانی در فرآیند تفسیر این دادهسازی دادهدلایل وارون نیتر مهمیکی از 

ی که ناهنجداری گراندی داده شدده را    ا گونه بهها توسعه داده شود ی چگالی سنگبعد سهسازی برای تعیین توزیع در این تحقیق سعی شده است که یک روش وارون

گدالی ایدن منشدورها    مشدخص اسدت ولدی افدت   چ     ها آنی مستطیلی تشکیل شده است که ابعاد و موقعیت بعد سهی از منشورهای رسطحیزبازسازی کند. مدل 

سازی ارائه شده از نرم کوشی و تابع وزنی عمقی به عنوان نرم مدل استفاده کرده که قید پراکندگی را بده ودوا    روش وارون نامعین بوده که باید تخمین زده شود.

شود، این کدار باعدت تشدکیل    د. مسئله وارون در فضای داده حل میشوکند. قید کران فیزیکی محدود از طریق تبدیل عمومی پارامترهای مدل اعمال میاعمال می

 تکدرار ه از یک روش سیستم معادلات فطی با ابعاد کمتر شده و زمان محاسبه کمتری نیاز دارد. برای کارایی بهتر، سیستم معادلات فطی کم بعد حاصله با استفاد

 سدازی فضدای داده   دهدد کده وارون  هدای مندنوعی نشدان مدی    هدای انجدام گرفتده روی داده   شود. آزمونی سازی لنکزوس حل میقطر دوسریع مثل روش  شونده

 دهدد کده   هدای گراندی مدوبرونش نشدان مدی     هدای گراندی واقعدی دداده   ی دادهبعدد  سهسازی آمده از وارون دست بهکند. نتایج هایی بلوکی و متمرکز تولید میووا 

 توزیع چگالی را تولید کند که با سافتارهای واقعی همخوانی دارد.مدل  تواند یمسازی فضای داده پراکنده وارون

 ی لنکزوس، موبرون.ساز یقطرسازی فضای داده، قید پراکندگی، قید کران، دو داده گرانی، وارون کلمات کلیدی:

 

 


