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Abstract

One of the most remarkable basis of the gravity data inversion is the recognition of sharp boundaries
between an ore body and its host rocks during the interpretation step. Therefore, in this work, it is attempted
to develop an inversion approach to determine a 3D density distribution that produces a given gravity
anomaly. The subsurface model consists of a 3D rectangular prisms of known sizes and positions and
unknown density contrasts that are required to be estimated. The proposed inversion scheme incorporates the
Cauchy norm as a model norm that imposes sparseness and the depth weighting of the solution. A physical-
bound constraint is enforced using a generic transformation of the model parameters. The inverse problem is
posed in the data space, leading to a smaller dimensional linear system of equations to be solved and a
reduction in the computation time. For more efficiency, the low-dimensional linear system of equations is
solved using a fast iterative method such as Lanczos Bidiagonalization. The tests carried out on the synthetic
data show that the sparse data-space inversion produces blocky and focused solutions. The results obtained
for the 3D inversion of the field gravity data (Mobrun gravity data) indicate that the sparse data-space
inversion could produce the density models consistent with the true structures.

Keywords: Gravity Data, Data-Space Inversion, Sparseness Constraint, Bound Constraint, Lanczos
Bidiagonalization, Mobrun.

1. Introduction

Gravity measurements have been used in a wide
range of investigations in geoscience, especially
in mineral exploration [1-4]. Gravity-measured
data are the vertical components of the Earth’s
gravitational field. The inversion of gravity data is
an important step in the quantitative interpretation
of the practical data since construction of the
density contrast models significantly increases the
amount of information that can be achieved using
the gravity data [5]. Inversion is defined as a
mathematical technique that automatically
constructs a subsurface physical property model
using the measured data by incorporating a priori
information. The recovered models must be
capable of predicting the measured data
adequately [6]. Inversion of the potential field
data such as gravity data suffers from
non-uniqueness since, according to the Gauss's

theorem, there are infinite equivalent source
distributions that produce the same measured
gravity field [7].

The standard approach used to obtain a unique
solution is to use an additional (priori)
information about the problem. The type and
amount of the priori information must be
determined to resolve the non-uniqueness of the
solution [8]. There are numerous forms
(geological, geophysical, and mathematical) of the
priori information that enable us to incorporate
information into the inversion process [9]. Some
of them include the smooth and small model
inversion [10, 5]; focused inversion [11, 12];
building models by growing source bodies [13];
inversion using different mathematical model
forms [14]; covariance-based inversion [15];
stochastic  lithology-based  inversion  [16];
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structural inversion using linear programming
[17]; inversion using an adaptive mesh [18]; data-
space inversion with sparseness constraints [19];
and stochastic inversion using co-kriging [20].

In mineral exploration, one of the most
remarkable basis of a potential field data
interpretation concerns the detection of sharp
boundaries between an ore body and its host
rocks. Therefore, an algorithm producing a
compact solution such as the focusing inversion
algorithm, proposed by Zhdanov (2002) [21], and
the one proposed by Pilkington (2008) [19] with
sparseness constraints is the natural choice [9].
Data-space inversion with sparseness constraints
was developed by Pilkington (2008) [19],
originally for a 3D inversion of the magnetic data.
In this algorithm, the solution is obtained with
sparseness and just positivity constraints using the
conjugate gradient iterative solver. The algorithm
was modified later for a 3D inversion of the
gravity data using a reference model [9].

In the 3D inversion of potential field data, a hard-
constraint prior information of the physical
property values is available. For instance, the
physical property may be known to lie within
particular bounds. We need to include this
information into the inversion [22]. In the gravity
inverse problem, bound constraint can improve
the solution and make it more compact [23].
Therefore, implementation of negative bound
constraint is necessary in the inversion of gravity
data. In this case, modification of the current data-
space inversion algorithm is necessary. It has been
shown that Lanczos Bidiagonalization [24] is a
faster iterative solver rather than the conjugate
gradient (CG) method in the inversion of potential
field data [25, 26].

In this work, at first, some modifications were
applied on the algorithm of data-space inversion
with sparseness constraints so that the general
bound constraints can be applied for the 3D
inversion of gravity data. For applying lower and
upper bound constraints on the model parameters,
a parameter transformation function that has
previously been used in inversions for electrical
conductivity and density data was applied [27,
28]. Then Lanczos Bidiagonalization was
employed as a fast iterative solver in the 3D
gravity data-space inversion with sparseness and
bound constraints to speed up the required
computation.

2. Methodology
To perform inverse modeling, the subsurface
under the survey area is discretized into
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rectangular prisms of known sizes and positions.
The density contrasts within each prism is an
unknown parameter to be estimated by solving the
inverse problem.

2.1 Forward modelling

Here, the formula given by Blakely (1996) [7]
was used to compute the gravity response of each
prism after discretization of the subsurface by
rectangular prisms. If the observed gravity
anomalies are caused by n subsurface rectangular
prisms, the gravity anomaly at the ith field point is
given by:

gi :Zqu]’ i:1,...,m (1)
=1

where @; is the gravity observation at the ith
point, p; is the density contrast of the jth prism,

and G; relates the ith datum of a unit density to

the jth subsurface rectangular prism. In the matrix
notation, Eq. (1) can be written as:

Gm=d,GeR™",deR™,meR" 2

Here, G is the forward operator matrix (also
called the sensitivity matrix) that maps the
physical parameters space into the data space. The
vector m denotes unknown model parameters,
and d is the data vector that is given by the
measurements (g,). There are some errors in the

measurement data because of the noise that is
assumed to be uncorrelated and have Gaussian
distribution. Thus:

Gm=d+e, ecR" (3)
where e is the vector of data error, and
d . =d+e is the vector of observed data. The

main purpose of the gravity inversion is to find a
geologically credible density model (m) that

predicts the measured data (d_, ) at the noise
level [29].

obs

2.2 Inverse modelling

To achieve a solution to Eq. (3), minimization of
the following total objective function (®) is
required [19]:

(4)
Expression D is the data weighting matrix given
by D™ =diag(1/oc,,...,1/05,), where o,
stands for the standard deviation of the noise in

®=(d, ~Gm) D*(d, ~Gm)+C(m-m,)
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the ith datum, and m_ is the prior or starting

model. The model objective function C(m)
comprises two parts, the depth-weighting function

Z(m) and a model norm term P(m).

Due to the lack of depth resolution in the
inversion of gravity data, a depth-weighting
function was introduced by Li and Oldenburg
(1998) [5]. It counteracts the spatial decay of the
potential data with the depth by giving more
weight to the rectangular prisms (cells) as depth
increases.

()

where z is the depth of each rectangular prism
(cell), and B is equal to 3 in the magnetic case

and to 2 in the gravity case [5, 10].
Sparseness is imposed on the model (m) using the
Cauchy norm [30]:

P(m) = anln(1+miz /nz)

where, m. is the model parameter of the ith cell.
The level of sparseness is controlled by the
parameterm. P(m) becomes small when more of

(6)

the parameters m, are smaller than m. This

condition make the solution sparse and focused. If
1 is made large compared with all of the model

parameters (m), then P(m) has an effect similar

to the minimum-norm solution, and has no
influence on the sparseness of the model, and
therefore, the model becomes smooth. Thus a
judgment is required to determine an appropriate
value for m for an inversion. This involves
inspection of the solution visually and deciding
whether it is geologically plausible [19].

The total objective function in Eq. (4) can be
minimized in the data space by the model

correction at iteration k as Am, [31]:
Am _=m, -m =
0Q,S1G"(65,Q,51G" +D) '
(dobS —Gm, +GS, [mk — mo])

(7)

where m, is the current model, and the constant o

is a step length variable that is chosen so that each
model correction is accepted only when the RMS
error of fit is reduced. Initially, it is set to unity,
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and then it is reduced by a factor of 3 until a
reduction in the fit is achieved. Q, represents a
diagonal matrix with elements

Q, :ziz(1+miz/n2), wherein z, is the depth to

the ith rectangular prism or voxel. Expression Q,

represents differentiating Eqg. (6) with respect to
the model parameters and imposes depth

weighting and sparseness constraints. GS, denotes

the Jacobian matrix, where Sk is a diagonal matrix

that imposes bound constraints (explained in the
next section).

The forward problem is linear but comprising the
model objective function and the parameter
transformation leads to a non-linear problem that
requires an iterative solution. The iterations
proceed until the RMS misfit reaches an
acceptable level or the model corrections become
small enough [19]. For simplicity, we can write
Eq. (7) in a compact form, as follows:

Amk = ochSEGTbk (8)
where:
-1
b, =(GS Q S'GT+D) x
k ( k *k "k ) (9)

(dobs -Gm, +GS, [mk - m0])

For a large-scale problem, b, is found at each

iteration by solving an m x m inverse problem in
Eq. (9) using the Lanczos Bidiagonalization
method [24], as follows:

f =Ab (10)
where

A, =(GS,Q,SiG"+D) (11)
and

f.=d, —Gm_+GS, [mk - m0] (12)

Iterative solvers algorithms provide very efficient
tools for solving large and possibly ill-conditioned
systems such as Eg. (10). The Lanczos
Bidiagonalization and Conjugate  Gradient
methods are two iterative solvers that have been
applied in the inversion of potential field data.
However, the Lanczos Bidiagonalization method
is faster and more efficient than the conjugate
gradient method [22, 25, 26]. Therefore, we used
the Lanczos Bidiagonalization method to obtain

b, in Eq. (10).
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2.3. Physical bound constraints

Implementation of physical bound constraints can
improve the results of inverse problems in
potential field data, and is effective in reducing
solution ambiguity [5, 10, 23]. Various techniques
such as the logarithmic barrier approach [22],
gradient projection approach [32], and transform
function approach [19, 33, 34] have been applied
in different inversion schemes to implement this
constraint. Here, we preferred to apply the last
method in the data space inversion algorithm to
convert the physical property parameter to a
generalized one x=x(m). Then the inversion

procedure can be solved with respect to vector x
in the full numerical space, and the final-acquired
model vector m is restricted in the given limits.
There are many choices for the transform
function, e.g. the logarithmic transform for
positive constraints or the square function for non-
negative constraints. We used a more generic
transform to introduce the bound information,
which can be written as [28]:

a, +c exp(hx )

(13)

m (x)= —0 <X, <0

1+exp(hx )

where a, and c, are the specified lower and

upper limits for m, e(ak,ck), respectively, and

h is a variable controlling the steepness of the
transformation. These parameters can be easily
represented in the vector forms a, ¢, and h for the
cases where bound information is provided for

each cell in detail. Differentiating Eqg. (13) with
respect to x yields:

om, (Ck —ak)exp(hxk)
ox. 2 (14)
k [1+exp(hxk )]

This derivative is always positive and bounded
[33]. For imposing bound constraints in Eq. (7),

S, is defined as a diagonal matrix with elements,

k
c, —a, Jexp(hx
S :( k “) PC ‘2‘). Therefore,

' [1+exp(hxk)]
iteration, Ax, and x, are calculated by solving

Eq. (7), and then the bounded model parameters
(m, ) can be achieved by Eq. (13).

at each

3. Synthetic example

To evaluate the reliability of the introduced
method, we inverted the synthetic gravity data of
the model shown by Figure 1(a). This model is
made by two different rectangular bodies (Table.
1), having a density of 1.0 g/cm®. The density of
uniform background was zero. The data was
collected over an area of 1000 x 1000 m with a
sample spacing of 25 m. There were 1600 data
points that were contaminated by 3% of random
noise.

The subsurface was discretized into 40 x 40 x 20
= 32000 rectangular prisms with a size of 25 m in
the x, y, and z directions.

Table 1. Parameters of synthetic model.

Model number

xxyxz dimensions (m)

Depth to top (m)

True density (g/cm’)

1) 250x250x250
) 500x125x200

-50 1
-100 1

-200

Z(m)

-400

1000

Y(m) 00 X(m)

(a)

Y(m)

mGal

0 200 400 600 800 1000

Figure 1. Perspective view of synthetic model (a). Gravity anomaly produced by synthetic model with 3%
Gaussian noise (b).
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The inverse problem was solved according to the
procedure described in the preceding section. The
maps of depth slices and cross sections through
the recovered model from the sparse data space (h
=1 andn=0.05) inversion algorithm are shown

in Figure 2. The inversion used a starting model

grlcm3
1

0g

08

07

06

05

Y(m)

04

03

02

01

0 200 400 600 800 1000 .

X(m)
(2)

Z(m)

200 400 600 800 1000
X(m)

©

Y(m)

(m, ) of zero, and yielded an RMS error of about

3%. Therefore, the result is acceptable with regard
to the noise. The sparse solution is blocky, and
defines two bodies precisely.

gr/cm3
1

0.9

0.8

0.7

0.6

0.5
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0.3

0.2

0.1

0
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X(m)

(b)

grl::m3

600 1000

Y(m)
(D

0.1

0

Figure 2. Plan sections through recovered density model obtained from inversion of gravity anomaly by the
proposed method at z =-50 m (a) and z =-150 m (b). Cross-section slices of the density model at Y =800 m (A-
A’) (c) and X = 500 m (B-B’) (d).

Sparse solution defines the depths to the top and
bottom of deep bodies adequately. However, the
results obtained indicate acceptable reconstruction
of the synthetic multisource anomaly at different
depth levels below the surface and in vertical
slices at Y =800 m (A-A’) and X = 500 m (B-B’).
The recovered bodies in the model along these
cross-sections are adequately matched with the
real location of the synthetic bodies.

4. Application to field data

The developed inversion algorithm was applied to
the field data acquired at the Mobrun sulfide body
in Noranda, Quebec, Canada. The gravity
anomaly is associated with a body of base metal
massive sulfide, which has been hosted by
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volcanic rocks of middle Precambrian age. The
density contrast of the orebody with host rock is
about 1.9 (g/cm®) [35]. The original gravity data
was collected on 60 m spaced lines with stations
of 30 m. The dataset consists of a regular grid of
38 x 33 data that is spaced 20 mx 20 m in the x
and y directions, respectively. Figure 3(a) shows
the gravity anomaly map constructed using the
dataset.

For a 3D inversion of data, the subsurface of the
studied area was discretized with 38 x 33 x 13
cells of 20 m in the x, y, and z directions,
respectively. The data was inverted using the
proposed algorithm with 0 g/cm® as the lower
bound and 1.9 g/cm? as the upper bound.
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Figure 3. Bouguer anomaly map of Mobrun deposit (a), depth slice at Z = -45 m through recovered density
model obtained from the inversion of gravity anomaly (b), cross-section slices of density model at Y = 330 m (B-
B’) (¢), and X =370 m (A-A”) (d).

The depth slice map (at Z = -45 m) of the density model is shown in Figure 4(b), which shows that this
sulfide body elongates from NW to SE. In Figure 4 (c and d), two cross-sections (at X =370 mand Y = 330
m) of the recovered density model are shown. The 3D view of the inversion model for the Mobrun sulfide
body considering a density cut off 0.8 g/cm? is shown in Figure 4.

Z(m)

Y(m) 0 0 X(m)

Figure 4. 3D view of inversion result at Mobrun sulfide body for a cut-off equal to 0.8 g/cm”.
232
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According to the results obtained, the depth to the
top of the body was about 20 m, and it extended to
the depth of more than 180 m. The location of the
sulfide body and the mineralized zone were
determined by drilling some boreholes. According

to the drilling data, the depth to the top of body
was about 17 m, and the ore body was extended to
187 m (Figure 5) [35]. Thus we obtained a good
solution in agreement with the results of drilling
and those obtained by Aghajani et al. (2009) [36].

. BH.2
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Figure 5. Center section of Mobrun sulfide body with geophysical interpretation [35].

5. Conclusions

We developed a 3D gravity data inversion
approach that is capable of carrying out the
optimization process in the N-dimensional data
space, and incorporates a sparseness constraint.
This leads to a smaller dimensional system of
equations to be solved, and avoids the need for
specifying any regularization parameter. Data
space inversion leads to a significant reduction in
the computation time compared with a model
space approach because the number of data is
usually less than the number of model parameters
in a 3D gravity data inversion. This procedure
further speeds up the inversion process using the
fast ~ Lanczos  Bidiagonalization iterative
algorithm. Addition of the Cauchy norm
emphasizes the sparseness of the inverted model
character. A logarithmic transformation was
applied to impose bound constraints thorough the
inversion process. A synthetic noise contaminated
data test shows that the sparse, data-space gravity
inversion produces a focused solution that defines
the subsurface bodies precisely. Finally, the
results of the 3D inversion of a real gravity data
set from Mobrun sulfide body by the proposed
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inversion algorithm are in good agreement with
those provided by the drilling and geological data.
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