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Abstract 

This work aims to extract the mineralogical constituents of the Lahroud Hyperion scene situated in the NW 

of Iran. Like the other push-broom sensors, Hyperion images suffer from spectral distortions, namely the 

smile effect. The corresponding spectral curvature is defined as an across-track wavelength shift from the 

nominal central wavelength, and alters the pixel spectra. The common “column mean adjusted in MNF 

space” method was employed in this work to improve the processing accuracy by minimizing the smile 

effect before carrying out the atmospheric and topographical corrections. The mineral distributions were 

mapped by applying the standardized hyperspectral processing methodology developed by analytical 

imaging and geophysics (AIG). The spectral unmixing of the data resulted in the identification of five 

indicative minerals including natrolite, opal, analcime, kaolinite, and albite; and their spectra were employed 

for the generation of their distribution maps. Comparison of the results of the data processing with and 

without smile correction indicated a better classification performance after the smile correction. Quantitative 

validation of the final mineralogical map was performed using the 100 k geological map and reports of the 

region. Therefore, the coverage of the extracted minerals were investigated regarding the location of the 

lithological units in ArcGIS that implies a high coincidence. The mineral distributions in the final map show 

a high consistency with the geological map of the studied area, and thus it could be utilized successfully to 

reveal the mineralization trend in the region. 

 

Keywords: Hyperion Data, Standardized Hyperspectral Processing Methodology, Smile Correction, 

Mineralogical Mapping. 

1. Introduction 

Hyperspectral sensors provide a complete spectral 

pattern for the superficial features that can be 

utilized for target detection, and discrimination 

and classification in wide branches of sciences 

such as the geological studies and mineral 

exploration [1, 2]. In contrast to the multispectral 

sensors, the hyperspectral sensors significantly 

improve the achievable spectral details of the 

materials present on the earth. Thus they have 

been utilized successfully in the mineralogical 

mapping due to their higher spectral resolution 

[2]. 

“Mixed pixels” is a challenging problem in 

hyperspectral remote sensing, which arises from 

their low spatial resolution. Finding pure pixels 

consisting solely of one mineral is, therefore, 

impossible. The measured radiance in a mixed 

pixel reflects the spectral characteristics of a 

combination of existing minerals, and needs to 

identify sub-pixel materials before classification 

[1, 3]. On the other hand, a suitable pre-

processing and corrections are required to achieve 

accurate outcomes since they will rectify the data 

errors or the undesired elements present on the 

scene [4, 5]. 

Hyperion data exhibits a wavelength shift in the 

across-track direction from the central wavelength 

of the bands in columns known as the spectral 

smile or frown effect. This effect is characteristic 

of the push-broom sensors, and depends on the 

wavelength and position of the image pixel 

column. The smile effect is most clearly evident 

http://www.sut.ac.ir/en/showpage.aspx?id=17
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in the visible near-infrared (VNIR) bands in 

contrast to the short wave infrared (SWIR) range 

[6]. This small variation might be important in the 

case of identification of the minerals by affecting 

their diagnostic absorption features [7]. 

There are various smile correction methods in use 

but the common column mean adjusted in MNF 

space method was applied in this research work 

before carrying out the atmospheric and 

topographic corrections. A mineral distribution 

map was then generated through the standardized 

hyperspectral processing methodology developed 

by analytical imaging and geophysics (AIG). In 

addition, a similar processing was conducted on 

the data without smile corrections to evaluate the 

effect of the corrections. 

The results obtained were validated using the 

corresponding 100 k geological map of the 

studied area regarding the previously determined 

mineralogical composites of each alteration zone. 

The coverage of the extracted minerals in the 

lithological units was determined in ArcGIS, 

which implies the high consistency with the 

distribution of the detected minerals. 

 2. Study area 

The studied area is located at 21.6 km NW of 

Lahroud in Ardabil province between the 

47˚33´18.6˝ and 47˚36´31.6˝ N latitudes and the 

38˚34´55˝ and 38˚30´21.7˝ E longitudes, covering 

approximately 46.47 km
2
 of the area. This area is 

part of the Lahroud 1:100,000 geological map. It 

is situated in the Alborz-Azerbaijan structural 

zone. Three main alteration zones are exposed to 

the Lahroud sheet including the alunitiezed, 

kaolinitiezed, and silicified zones, which cover 

56.3% of the studied area. Altered rocks are the 

most extended lithological units in this area. 

Meanwhile, a small portion of this region (~7%) is 

covered by sediments. 

3. Hyperion 

Hyperion is a hyperspectral instrument on the 

earth-observing 1 (EO-1) spacecraft, and records 

the electromagnetic energy across the wavelength 

range of 0.4-2.5 μm in 242 continuous spectral 

bands with a ~10 nm spectral bandwidth and a 30 

m ground resolution. Hyperion acquires data via 

two spectrometers (VNIR (0.4-1 μm) and SWIR 

(0.9-2.5 μm)) [8]. Surface minerals have 

diagnostic spectral signatures in this spectral 

range, enabling them to be detected using the 

remote sensing analysis techniques [8]. Thus 

processing high spectral resolution images will 

facilitate the discrimination of the earth-surface 

materials. These characteristics are generally 

utilized for identification of the indicator 

alteration minerals as a direct evidence of the 

existing mineralization [2]. 

However, Hyperion is a push-broom type sensor 

with poorly calibrated detectors indicating 

numerous problems in the VNIR/SWIR regions 

such as the vertical strips and smile effect. 

Correction of these effects will improve the 

accuracy of the extracted features and the 

resulting unmixing and classification map [2]. 

4. Pre-processing 

Generally, the remotely sensed data contains 

flaws or deficiencies in their raw form. Removal 

or rectification of the errors and unwanted 

elements is termed as pre-processing since they 

are commonly carried out before the “information 

extracting” (processing) tasks [5]. 

Pre-processing is necessary to provide high-

quality data for analysis [9, 10]. Sun azimuth, 

elevation, and sensor response influence the 

observed energy [11]. Therefore, in order to 

obtain the real irradiance or reflectance, those 

radiometric distortions must be corrected. Since 

the Hyperion data for the studied area is level 1R, 

the radiometric correction has already been 

performed by the distributor. 

4.1. Smile effect 

A common error, obvious in push-broom sensors, 

is referred to as the spectral smile, also known as 

the spectral curvature or frown effect. It is a kind 

of spectral distortion arising from a change in the 

depression angle related to the field position. 

Smile effect is defined as a wavelength shift in the 

spectral domain from the nominal central 

wavelength, depending on the across-track pixel 

(column) position in the swath. The central 

wavelength of the bands varies with the spatial 

position across the image width in a smoothly 

curving pattern. Very often the peak of this 

smooth curve tends to be in the middle of the 

image, providing a shape of a smile or frown that 

alters the pixel spectra. Therefore, the extracted 

information from a smiled Hyperion image will 

most likely reduce the subtle surface classification 

accuracies [4]. 

The spectral smile has been reported to vary from 

2.6 to 3.6 nm in VNIR and ~1 nm in the SWIR 

range that affects the diagnostic absorption 

features of the minerals [12]. As the bandwidth of 

Hyperion is about 10 nm, such a little wavelength 

shift seems not to be a serious problem, although 

in the case of mineral identification, this small 

variation is important [7]. 
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4.1.1. Smile indicators 

The smile effect is not identifiable through the 

individual Hyperion bands. Indicators are, 

therefore, utilized to determine whether a 

Hyperion image suffers from the smile problem. 

Two indicators have been suggested for this 

purpose including the MNF transformation and 

the band difference technique [2, 13]. 

4.1.1.1. MNF 

Images significantly suffering from the smile 

effect present a brightness gradient or variation in 

the MNF space (normally, at the first MNF band) 

[2, 4, 13, 14]. Accordingly, a forward MNF 

rotation was separately applied to VNIR (8-57) 

and SWIR (79-224) of the data. The first 

components of the resulting MNF images (MNF1) 

for each spectrometer in addition to the horizontal 

profile for the same line (line 3 of the Hyperion 

image) of the image are illustrated in Figure 1. 

According to the resultant images in Figure 1, 

there is an obvious brightness gradient in the 

MNF1 image of the VNIR bands causing a frown 

shape on the across-track pixel reflectance. In the 

SWIR region, however, the gradient is negligible, 

and there are only random variations in the 

respected profile. 

4.1.1.2. Band difference images 

An alternative method used to survey the smile 

effect is the application of the absorption features 

(AFs) of gases (e.g. O2 and CO2). The smile effect 

results in a brightness gradient after calculation of 

the difference images of the bands affected from 

these absorption features [13]. Oxygen has a 

strong AF on the 762 nm wavelength (Hyperion 

band 41), also affecting the bands 40 and 42. It is 

expected that oxygen would contribute equally to 

all pixels of the image in the mentioned bands if 

the spectral smile did not affect the image 

significantly. Thus the subtraction image of the 

bands around this absorption feature (bands 40 

and 42) should result in an image with zero values 

across the track direction [13, 15]. In the same 

way, CO2 has a distinct absorption feature on the 

2 μm wavelength, and is then helpful for a SWIR 

spectrometer [16]. The difference images obtained 

using the mentioned approach are illustrated in 

Figure 2. The outcome is the same as the MNF 

method that implies the obvious gradient in the 

VNIR range. Evaluation of the across track profile 

of this image also demonstrated the non-linearity 

variation indicating the existence of a significant 

smile effect in the VNIR region of the dataset. 

 

 

 

 

 

 

(a) (b) 

Figure 1. MNF1 indicator images of smile effect and corresponding across-track pixel reflectance variations for 

VNIR (a) and SWIR (b) spectrometers. 

 

 

 

 

 

(a) (b) 

Figure 2. Band difference indicator images of smile effect and corresponding across-track pixel reflectance 

variations in (a) VNIR region (band 40-band 42), and (b) SWIR region (band 184-band 186). 
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4.1.2. Smile correction 

The VNIR bands of Hyperion significantly suffers 

from smile effect, as demonstrated in the previous 

section. Despite the high spectral resolution of the 

Hyperion images, these small shifts alter the pixel 

spectra so that it could reduce the classification 

accuracies in mineral mapping. There are various 

methods developed for this correction, although 

none of them has been widely accepted by the 

researchers yet. The most common approaches are 

as follow [4]: 

I- Moving linear fitting and interpolation that 

cannot remove the smile effect on the Hyperion 

images completely. It can be clarified through the 

possible post-launch variations in the spectral 

calibration. 

II- Column mean adjusted in radiance space that 

replaces the column mean values of the original 

bands by the corresponding band mean values. 

This method creates false spectra, assuming the 

sufficient homogeneity of the image (not 

generally true). Nevertheless, this approach 

removes the brightness gradien. 

III- Column mean adjusted in MNF space that 

replaces the column mean values with the 

corresponding band mean values in MNF space. 

Similarly, this method also removes the brightness 

gradient created false spectra. 

A reliable smile correction is able to remove the 

brightness gradient in the indicator images, and 

must retain the spectral fidelity after correction 

(would not create false spectral features). 

According to Goodenough et al. [4], the 

aforementioned approaches maintain the basic 

spectral absorption features but do not remove the 

smile effect completely. The first one is not 

applicable here as the pre-launch and post-launch 

calibrations are different and the column mean 

adjusting method generates false spectra 

(artifacts) that are different from the original 

Hyperion data [4].  

The column mean adjusted in MNF space method 

was, therefore, utilized in this work by 

programming in MATLAB. To perform this task, 

the column mean value of the MNF bands were 

set to the global band mean values, and then the 

processed dataset was rotated back into the 

radiance space. The results on MNF1 and band 

differential indicator images after the correction 

were illustrated in Figure 3. This figure implies 

elimination of the brightness gradient in both of 

the indicator images. The across-track pixel 

reflectance variation does not demonstrate the 

smile effect as well. 

 

 

 

 

 

(a) (b) 

 

 

 

 

(c) (d) 

Figure 3. Smile indicator images of de-smiled Hyperion dataset and corresponding horizontal profiles, band 

differential image of a) VNIR bands (B40-B42), and b) SWIR bands (B184-B186); MNF1 of a) VNIR (bands 8-

57), and d) SWIR (bands 79-224). 



Mohammady Oskouei & Babakan/ Journal of Mining & Environment, Vol.7, No.2, 2016 

 

265 

 

4.2. Atmospheric correction 

The atmospheric correction aims to remove the 

influence of the atmosphere on recorded energy. It 

separates the contribution of earth responses from 

the atmosphere-land mixed signals. In fact, 

sunlight in the way of the sun to the earth and 

from the earth to the sensor is scattered by various 

constituents of the atmosphere. Therefore, the 

actual reflectance of the earth features have to be 

accurately recovered to provide a more successful 

classification and discrimination performance. 

Atmospheric correction is the premise of many 

quantitative algorithms for extraction of the 

informative signals from data [17-20]. 

In this study, the atmospheric correction was 

performed using the FLAASH (fast line-of-sight 

atmospheric analysis of spectral hypercube) 

algorithm. FLAASH is a MODTRAN4-based 

atmospheric correction software package that 

provides accurate and physical derivation of the 

apparent surface reflectance. It extracts some of 

the necessary parameters from the data, and 

compares the image radiance spectra with the 

MODTRAN lookup tables on a pixel-by-pixel 

basis to determine the scaled surface reflectance 

[18, 21].  

4.3. Topographic correction  

Topography seriously affects the quality of the 

remotely sensed data since it alters the viewing 

angle for each pixel on the scene. Therefore, it is a 

vital correction for remotely sensed data, 

especially in rugged terrain [22-24]. The sun 

facing a slope presents higher reflectance values 

than its opposite side, and this will cause a 

possible misclassification of similar ground 

features in different topographies. Different 

techniques have been developed to reduce 

topographical distortions employing the digital 

elevation model (DEM). Efficient removal or 

minimization of the terrain-dependent 

illumination is substantial in rugged terrains to 

extract the maximum and accurate information 

[23].  

The topographic correction techniques are 

categorized into two main groups: Lambertian 

approaches that assumes uniform/equal reflection 

of the incident solar energy by surface in all 

directions and attempts to reduce only the 

distortions caused by the surface orientation; and 

non-Lambertian algorithms that models diffused 

irradiance by constant values depending on both 

the land cover type and bands wavelengths [23, 

25-29]. The impact of the topographic 

illumination is mainly depended on the 

wavelength of the incoming radiation, the local 

solar incidence angle, and the specific reflectance 

characteristics of the land cover types [30, 31].  

The cosine method is one of the Lambertian 

approaches. When LH and LT denote the radiance 

observed over the corrected and inclined (before 

correction) surfaces respectively; and θz and θi are 

the solar zenith angle and incident angle, the 

cosine correction for topographic effects is then 

calculated as equation 1 [24, 29, 32]: 

z
H T

i

cos
L L

cos


 


 (1) 

In the current study, the cosine method was 

applied regarding its simple and reliable 

functionality. The task was implemented by 

programming in interactive data language (IDL).  

4.4. Data quality assessment  

Existence of noisy bands (bad bands) in data 

causes inaccuracy in the resultant unmixing and 

classification maps. Briefly, a bad band refers to a 

band that has insignificant/inconsiderable or no 

information to be extracted [33, 34]. The effect of 

noise (N) on an image digital number (DN) at the 

i
th
 and j

th
 pixels is modeled as the summation of 

the true signal (S) and noise [11, 35, 36]: 

i, j i, j i, jDN S N   (2) 

Consequently, if the noise significantly affects the 

images, the recorded value in the image pixels 

will be approximately equal to the noise amount, 

and the band will be indicated as a bad band. 

Signal to Noise Ratio (SNR) is one of the most 

effective indicators in the quality assessment of 

the hyperspectral images [33, 34, 37, 38]. Several 

image-based methods have been developed for the 

approximation of the image SNR. Most of these 

approaches are conducted through the comparison 

of the mean spectral response (representing the 

signal) to the standard deviation values 

(representing the image noise) [39, 40]. 

Accordingly, the mean to standard deviation 

method was applied to approximate the SNR of 

the Hyperion image in this work. In addition to 

the un-calibrated (1-7, 58-76, 225-242) and 

spectrally overlapping bands (57, 77), the bands 

with considerably lower SNR concerning to the 

adjacent bands were also marked as bad bands. 

Therefore, only the informative bands (178 out of 

total 242 bands) were selected for the unmixing 

process.  
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5. Unmixing  

Hyperspectral imagery makes it possible to 

investigate the earth surface in more detail. It is, 

therefore, employed in a diversity of earth 

sciences, particularly in mineral exploration [1]. 

Mixed pixels are, however, a challenging problem 

in the hyperspectral data arising from the 

insufficient spatial resolution of the sensors or due 

to the combination of distinct materials into a 

microscopic mixture regardless of the ground 

resolution [3]. The radiance of a mixed pixel is a 

combination of the individual pure spectra of 

intimated materials in that pixel. Thus it is 

necessary to unmix the pixel spectra to determine 

the abundances fractions of each constituent or 

endmember [1, 41]. The linear mixture model 

(LMM) has been widely utilized in the 

development of unmixing algorithms due to its 

simplicity and acceptable functionality in many 

real datasets. According to this theory, the 

spectrum of a mixed pixel is a linear combination 

of the endmember spectra weighted by their 

respective abundances [1, 42].  

The standardized methods developed by analytical 

imaging and geophysics (AIG) [43, 44] was 

employed for unmixing the studied image (Figure 

4). AIG is a stepwise algorithm, which is 

embedded in an ENVI platform. A data reduction 

procedure in both the spectral and spatial 

dimensions is applied through this methodology 

for data compression. The available endmembers 

are then identified using the N-dimensional 

visualization of the purest pixels, which are 

extracted from the pixel purity index (PPI) 

analysis. Finally, the distribution of the extracted 

endmembers is mapped with the use of the 

mixture tuned matched filtering (MTMF) method 

that maximizes the desired endmember signature 

and minimizes the background or undesired 

signal. The methodology is described in the next 

sections. 

 

 
Figure 4. A Schematic diagram presenting standardized AIG hyperspectral analysis procedure. 

5.1. Spectral data reduction  

The MNF transformation is applied by AIG to 

reduce the band numbers. MNF is a useful tool to 

determine the inherent dimensionality of data with 

noise whitening. The lower order MNF bands 

(noise-dominated images) were discarded from 

the next processing steps [41, 43, 45]. Therefore, 

only the first 25 MNF bands were selected for 

further analysis in this study. 

5.2. Spatial data reduction  

Pixel purity index (PPI) is a process to find the 

most spectrally pure pixels (potential 

endmembers) in an image. Reflectance of the 

mixed pixels is then considered as a linear 

combination of the pure pixel spectra [41, 43, 45]. 

The recorded spectra is thought as points in an n-

dimensional scatter plot, where n is the band 

number. The coordinates of the points in this 

space are constructed from the spectral reflectance 

values in each band for a given pixel. The scatter 

plot of the pure pixels in the n-space is utilized to 

understand the spectral characteristics of the 

features in an image. In addition, this tool allows 

comparing not only the relationship between the 

data values in various bands but also the spatial 

distribution of the pixels in any area of the scatter 

plot. The distribution of the purest pixels is used 

to estimate the number of endmembers and their 

pure spectral signatures [43, 46, 47].  

The purity index is computed by repeatedly 

projecting n-dimensional scatter plots on random 

unit vectors. The total counts when each pixel is 

marked as extreme (fall onto the ends of the unit 

vectors) are presented as an image. The purest 

pixels with the highest purity index values are the 

candidate endmembers. The spectrally similar 
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pure pixels which represented the same 

endmembers were then eliminated [41, 43, 45]. 

5.3. Visualization 

Target spectra or spectrally pure pixels, 

representing compositionally distinct materials in 

the scene, were determined after the PPI 

computations. This implementation significantly 

reduces the pixels to be searched for 

mineralogical spectral recognition. The pure pixel 

vectors were, therefore, visualized in the n-

dimensional space (selected MNF bands) to find 

and cluster spectrally similar pixels for defining 

the endmember signatures [45, 48].  

In fact, all mixed pixels are placed inside a 

simplex formed by the endmembers as its vertices. 

The abundances are also under the non-negativity 

and sum to unity constraints. Therefore, if there 

are only two endmembers in the scene, the mixed 

pixels will fall in a line and the endmembers at the 

two ends of the line, and similarly, three 

endmembers fall inside a triangle, and so on. Thus 

the spectral characteristics of the endmembers and 

their abundances are intuitively discoverable by 

this geometric model [43, 46, 47]. The 

endmembers in the scene were defined by visual 

inspection of the distribution of the pure pixels in 

2-3-4-dimensional scatter plots, considering 

various MNF bands. The mean spectral profiles of 

defined clusters were then calculated as the target 

endmember signatures. 

5.4. Spectral identification 

Once the endmember spectra were extracted, the 

identification of their mineralogy was performed 

by matching them to the USGS reference spectra 

that are resampled to the Hyperion data [45, 46]. 

The spectral feature fitting (SFF) method was then 

applied to identify the corresponding minerals of 

each endmember. In addition, the consistency of 

the reference spectra and spectral profiles of 

endmembers were also visually verified in the 

SWIR range. This range of wavelength plays a 

vital role in discrimination among different 

minerals because minerals generally have obvious 

absorption features in this range (1.9-2.4 μm). 

This was resulted in the identification of five 

minerals including natrolite, analcime, opal, 

kaolinite, albite, whose spectral profiles are 

illustrated in Figure 5. The endmember signatures 

before the smile correction were also presented in 

this figure to show its effect in the VNIR region. 

 

     
(a) (b) (c) (d) (e) 

Figure 5. Endmember spectral profile before (red) and after smile correction (green) along with the best 

matching reference spectra (blue) (a) natrolite, (b) opal, (c) analcime, (d) kaolinite, (e) albite. 

5.5. Classification 

The mixture tuned matched filtering (MTMF) is a 

common technique used to map the endmember 

distributions. It uses an estimate of the 

background statistics to suppress the response of 

unknown background, while maximizing the 

response of the known endmember spectra. Prior 

knowledge about all background signatures is not 

needed in application of MTMF, and it, therefore, 

provides a more practical unmixing. In addition, 

this technique generates an infeasibility image for 

each endmember to prevent detection of false 

positives [46, 48-51]. The best mapping results 

correspond to the pixels with higher MF and 

lower infeasibility score [47, 49, 50].  

MTMF was applied on both the smile corrected 

and uncorrected data of the studied area, and 

resulted in a classification map of detected 

minerals based on their abundances in the image 

pixels. The pixels having higher infeasibility 

scores (>9) were assigned as unclassified. The 

pixels infeasibility scores in the resulted MTMF 

maps varied from 1.8 up to 44.4. Examination of 

the different infeasibility scores implicated that 

the threshold 9 discards nearly all the unreliable 

estimates of the MF mapping results. The 

resulting mineralogical maps and the geological 

setting of the study area were presented in Figure 

6. As implied from the final classification maps, 

the smile corrected data resulted in a more 

accurate classification. 
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(a) (b) (c) 

 
Figure 6. (a) Geological map of studied area, (b) and (c) Mineralogical maps before and (c) after smile 

correction, respectively.  

6. Validation  

The validation of the resultant maps of the smile 

corrected image was conducted using the 

geological setting and their constituent minerals. 

Therefore, the extension of the lithological units 

and rock types in the studied area was digitized 

from the 100 k geological map of the Lahroud 

sheet [52]. The intersection area of the resultant 

MTMF classification map and digitized 

lithological units (Figure 6a) was then computed 

in ArcGIS. The area of mineral subsections in 

each lithological unit was divided by the total area 

of that unit. The results obtained are presented in  

 

 

Table 1 and Figure 7. The total coverage of the 

lithological units in the studied area (from 

geological map [52]) and the area occupied by 

each mineral class at the MTMF map are 

presented in Figure 7.  

 

 

 
(b) 

 
(a) (c) 

Figure 7. (a) Percentage of area covered by each mineral class in existed lithological units (digitized from [52]), 

and their coverages (b), (c) Coverage of extracted mineral at final MTMF map. 
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Table 1. Quantitative comparison of coverage of minerals and lithological units in studied area in addition to the 

corresponding rock types in Figure 7. 

Symbol 

[52] 

Description of geological units 

[52] 

Area 

(%) 

Coverage of minerals in lithological units (%) 

Natrolite Opal Analcime Kaolinite Albite 

A Alunitiezed and kaolinitiezed zone 32.7 4.3 16.4 17.8 67.4 15.3 

E
pl

 Porphyritic latite lava flows 8.3 0.0 7.0 3.0 2.6 7.3 

E
va

 Andesite, Latiteandesite 11.3 1.3 2.2 72.2 2.3 6.9 

O
r
 Rhyolite, Rhyodacite 0.1 0.0 1.0 0.0 0.0 0.0 

Pl
t
 Trachytic and dacitic domes 2.7 0.3 5.6 0.7 0.4 4.1 

Q
al

 Recent Alluviums 5.4 58.0 1.0 2.4 0.0 3.2 

Q
t2

 Young terraces and fans 0.6 0.0 0.2 0.1 0.8 0.0 

Q
vs

 
Sabalan volcanosediments, mainly: 

Tuff, Ash, Lahar, Conglomerate 
14.3 27.3 11.3 0.5 0.0 18.3 

Qt
l
 

Old terraces: Clay, Sand, Silt, 

Localy gypsum, Conglomerate 
1.0 8.8 0.1 0.0 0.0 4.5 

Si Silicified zone 23.6 0.0 55.0 3.4 26.5 40.3 

 

According to the results obtained, distribution of 

the detected minerals was strongly consistent to 

the geological setting indicated in the geological 

map of the region. Kaolinite was mostly mapped 

in the alunitiezed and kaolinitiezed alteration 

zones (67.4%), opal in the silicified zone (55%), 

natrolite in the recent alluviums (58%), analcime 

in the andesite, latiteandesite rocks (72.2%), and 

albite in most of the lithological units in the 

studied area, as expected. In addition, mineral 

occurrences in the respective rocks are reported in 

the map description based on the field studies.  

7. Results and discussion  

In this work, the effect of smile correction on a 

Hyperion scene for mineral mapping was 

surveyed, and, therefore, the “column mean 

adjusted in MNF space” method was exploited. 

The effect of correction was surveyed by 

investigating the unmixing results of the corrected 

and uncorrected image. Five minerals were then 

identified using the standardized AIG 

hyperspectral analysis procedure, and their 

abundance maps were generated by the MTMF 

approach. According to the geological setting, two 

alterations including the alunitiezed/kaolinitiezed 

and silicified zones dominantly occur in the 

region. These alterations were identified in the 

MTMF map through the distribution of the 

kaolinite and opal indicative minerals, 

respectively. Meanwhile, the detected clay 

minerals like kaolinite were lead to the existing of 

hydrothermal alterations, and they were irrelevant 

to the secondary clay minerals that are common in 

sediments. Analcime bearing andesite, latite, and 

dacite rocks are also common rock types in the 

studied area, which were successfully reflected by 

analcime detection. Albite is common in most 

various volcanic and low-grade metamorphic 

rocks, and was mapped in most igneous outcrops 

in the region. Natrolite was dominantly mapped in 

the recent alluviums, which is acceptable 

according to its genesis and occurrence conditions 

as a member zeolite minerals. However, as 

implied by the classification maps, correcting the 

smile effect improved the distribution map 

slightly (uniform strips of mineral abundances on 

classification map), although did not seriously 

affect the spectra of the detected endmembers. 

Thus regarding the geological setting in the 

studied area and its sophisticated facieses, this 

work proved the efficiency of the Hyperion 

datasets in mineralogical mapping after 

application of the necessary pre-processings 

including smile correction. Regarding the obvious 

absorption features of most minerals in the SWIR 

region, performing the matching process in this 

region will improve the mineral detections.  

8. Conclusions 

The Hyperion scene of the Lahroud region, 

situated in the NW of Iran, was unmixid for 

mineral detection and alteration mapping. 

Accordingly, the necessary preprocessing steps 

were applied to the dataset to improve the image 

quality. A common error typically known to occur 

in the push-broom sensors like Hyperion is the 

spectral smile, while the existence of this effect is 
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not obvious on the individual Hyperion bands, 

evaluation of the smile indicators (MNF1 and 

band differential images), especially in the VNIR 

region, demonstrated the necessity of the smile 

correction. Thus pre-processing was conducted by 

performing the smile (column mean adjusted in 

MNF space), topographic (cosine method), and 

atmospheric correction (FLAASH); and data 

quality assessment (mean/standard deviation 

method) sequentially to increase the processing 

accuracy. In addition, the mapping results of the 

data without smile correction was investigated to 

evaluate the role of the smile correction in the 

resultant classification map. 

The standardized AIG hyperspectral analysis was 

employed to extract the mineralogical and 

geological information of the studied area. The 

spectral unmixing of the Hyperon image resulted 

in the identification of five indicative minerals 

including natrolite, opal, analcime, kaolinite, and 

albite. Their spectral profiles were applied for 

generation of the classification map.  

Examination of the final mineralogical map 

regarding the geological setting of the Lahroud 

region was conducted quantitatively. Therefore, 

the coverage of the extracted minerals was 

investigated in comparison to the location of the 

lithological units in ArcGIS. The results obtained 

implied the high consistency of the mineral 

distributions to the geological settings. 

Accordingly, kaolinite with the highest coverage 

in the alunitiezed and kaolinitiezed zone 

previously determined on the geological map [52] 

was defined as the representative of this alteration 

(67.4%). Similarly, opal is the representative of 

the silicified alteration with the coverage of 55% 

in this zone. The outcomes confirmed the 

efficiency of the applied approach in alteration 

mapping. However, as implied in the 

classification maps, correcting the smile effect 

resulted in a more accurate classification. Though 

the smile correction did not seriously affect the 

extracted endmembers signatures but caused some 

uniform strips of the minerals abundances that 

decreased the accuracy. The high consistency 

between the classification and geological maps of 

the studied area indicated the reliability of the 

proposed approach in the Hyperion data 

unmixing.  
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 چکیده:

های پووش بوروم،   . نظیر اغلب سنجندهاستی اصلی در یک بخش از تصویر هایپریون منطقه لاهرود واقع در شمال غربی ایران ها یکانهدف از این مطالعه تشخیص 

شوده و بوه   در تصاویر هایپریون نیز خطای حاصل از انحنای طیفی مشهود است. این اثر باعث ایجاد یک جابجایی طول موجی در جهت عمود بر حرکوت سونجنده   

کواهش   برای «MNFمیانگین متوازن شده ستونی در فضای »روش  یابد. در این مطالعه ازدر باندهای مختلف تغییر می ها کسلیپاین ترتیب انرژی ثبت شده برای 

هوا توسوط روش پوردازش    خطای انحنای طیفی و افزایش صحت پردازش استفاده شد. این عمل قبل از تصحیحات اتمسفری و توپوگرافی انجام گرفت. توزیع کوانی 

ها منتج به تشخیص پنج کوانی معورف   ترسیم شد. جداسازی طیفی داده ها آنهای فراوانی تعیین و نقشه AIGهای هایپراسپکترال استاندارد ارائه شده توسط داده

هوا  در تصویر مورد مطالعه محاسبه شد. مقایسه نتایج حاصول از پوردازش داده   ها آنی ها فیطاوپال، ناترولیت، آنالسیم، کائولینیت و آلبیت شد که در ادامه فراوانی 

بندی در تصویر هایپریون داشوت. اعتبوار سونجی    طبقه تمیالگورحنای طیفی(، نشان از تأثیر مثبت تصحیح مورد بحث بر عملکرد در دو حالت )با و بدون تصحیح ان

در محویط   هوا  یکوان ی منطقه صورت گرفت. به این منظور مناطق پوششی هر کودام از  شناس نیزمی ها گزارشبر اساس مقایسه با نقشه و  ها یکانکمّی نقشه توزیع 

ArcGIS  هوای  هوا و کوانی  های سنگی بررسی شد که نشانگر همبستگی بالایی است. با توجه به این رابطه منطقی بوین رخنموون  با رخنمون ها آنو تطابق منطقی

 شود.میسازی در اکتشافات معدنی البته با انجام تصحیحات لازم توصیه ، کاربرد روش مورد بحث در شناسایی روند کانیها آنشناخته شده در داخل 

 .ها یکانبرداری های هایپراسپکترال، تصحیح انحنای طیفی، نقشههای هایپریون، روش پردازش استاندارد دادهداده کلمات کلیدی:

 

 

 

 

 

 


