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Abstract 

Determining the distribution of heavy metals in groundwater is important in developing appropriate 

management strategies at mine sites. In this paper, the application of artificial intelligence (AI) methods to 

data analysis, namely artificial neural network (ANN), hybrid ANN with biogeography-based optimization 

(ANN-BBO), and multi-output adaptive neural fuzzy inference system (MANFIS) to estimate the 

distribution of heavy metals in groundwater of Lakan lead-zinc mine is demonstrated. For this purpose, the 

contamination groundwater resources were determined using the existing groundwater quality monitoring 

data, and several models were trained and tested using the collected data to determine the optimum model 

that used three inputs and four outputs. A comparison between the predicted and measured data indicated 

that the MANFIS model had the most potential to estimate the distribution of heavy metals in groundwater 

with a high degree of accuracy and robustness. 
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1. Introduction 

Mining and mine-related industries have the 

potential significant environmental impacts due to 

the formation of acid drainage, and the release of 

toxic compounds such as heavy metals into 

groundwater. Acid mine drainage (AMD) 

generated through the oxidation of sulfide 

minerals such as pyrite, marcasite, and jarosite is 

characterized by high concentrations of iron, 

dissolved sulfate, low pH, and variable 

concentrations of metals and rare earth elements 

(REEs) [1]. In particular, toxic metals such as Pb, 

Zn, Cu, Mn, and Cd are released into the 

environment under the condition of low pH, 

which can be harmful to the living organisms. The 

common methods used for measuring heavy 

metals in AMD are time-consuming and may be 

prohibitively-expensive in countries with limited 

resources. Therefore, other tools are required to 

determine the distribution of groundwater 

contamination at mine sites that use analytes that 

can be sampled and analyzed more cheaply, and 

that can be used as proxies for the distribution of 

metals in groundwater. Artificial intelligence (AI) 

techniques are among the most used to assess the 

groundwater quality data. The algorithms and 

methods studied in AI include knowledge-based 

systems (KBSs), genetic algorithms (GAs), 

biogeography-based optimization (BBO), artificial 

neural networks (ANNs), fuzzy logic (FL), and 

adaptive neural fuzzy inference system (ANFIS). 

Recent investigations have highlighted the 

application of the AI techniques to the 

environmental engineering problems. ANNs have 

obtained an increasing recognition in different 

environmental engineering fields in the past few 

decades because of their ability to extract complex 

and non-linear relationships from datasets. Rogers 

and Dowla (1994) began to optimize groundwater 

remediation using an ANN with a parallel solute 

transport modeling [2]. Schleiter et al. (1999) 

modeled water quality, bio-indication, and 

population dynamics in ecosystems using ANN 

[3]. Cigizoglu (2002)estimated the suspended 

sediment for rivers using ANN and sediment 
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rating curves [4]. Kemper and Sommer (2002) 

anticipated the heavy metal concentration in soils 

from reflectance spectroscopy using back-

propagation neural network (BPNN) and multiple 

linear regression(MLR) [5]. Liu et al. (2004) 

evaluated the ability of a BPNN model to forecast 

the variation in the groundwater quality of an area 

in Taiwan [6]. Almasri and Kaluarachchi 

(2005)used the modular neural networks to 

forecast the nitrate distribution in groundwater 

using the on-ground nitrogen-loading and 

recharge data [7]. Palani et al. (2008)used ANN to 

predict and forecast the quantitative 

characteristics of Singapore coastal water bodies 

[8]. Noori et al. (2010)used ANN and principal 

component analysis-MLR models in order to 

forecast the river flow based on the developed 

discrepancy ratio statistic [9]. Rooki et al. (2011) 

predicted heavy metals in AMD using BPNN, 

general regression neural network (GRNN), and 

MLR in the Shur River of the Sarcheshmeh 

porphyry copper mine, SE of Iran [10]. Heydari et 

al. (2013) developed the ANN models to calculate 

the monthly values of dissolved oxygen and 

specific conductance as two water quality 

parameters of Delaware River at a station situated 

at Pennsylvania site in the US [11]. Badaoui et al. 

(2013)applied an ANN of MLP type for the 

anticipation of the levels of heavy metals in 

Moroccan aquatic sediments [12]. 

Irfan Yesilnacarand Sahinkaya (2012) applied 

ANN for prediction of sulfate and SAR in an 

unconfined aquifer in Turkey [13]. Keskinet al. 

(2015) used ANN for the prediction of water 

pollution sources in Turkey [14]. Nasr and Zahran 

(2014)used pH as a tool to predict salinity of 

groundwater for the irrigation purpose using 

ANNs [15]. Grande et al. (2009) applied a fuzzy 

logic qualitative model to the presence of As in 

the fluvial network due to the AMD processes in 

the RioTinto mining area (SW Spain) [16]. Yan et 

al. (2010)developed ANFIS for the classification 

of water quality status [17]. Sahu et al. (2010) 

used fuzzy logic and ANN models to predict the 

spontaneous heating susceptibility of Indian coals 

[18]. Valente et al. (2013) used the fuzzy 

inference system to estimate the concentration of 

metals in AMD [19]. Mohammadi and Meech 

(2012) applied the AFRA-heuristic expert system 

to assess the atmospheric risk of sulfide waste 

dumps [20]. Zhang et al. (2012) used fuzzy 

cognitive maps and policy option simulations 

analysis for a coalmine ecosystem in China [21]. 

Liu and Zou (2012) used improved fuzzy matter-

element method to evaluate water quality in China 

[22]. Pourjabbar et al. (2014) used fuzzy divisive 

hierarchical clustering (FDHC) and fuzzy 

hierarchical cross-clustering (FHCC) to 

investigate the source of contamination near an 

abandoned uranium mine in Germany [23]. 

Mahdevari et al. (2014) used the fuzzy TOPSIS 

model to assess the human health and safety risks 

in underground coal mines [24]. Chang et al. 

(2014) used the neuro-fuzzy networks with factor 

analysis to assess arsenic concentration in Huang 

gang Creek in northern Taiwan [25]. Maiti and 

Tiwari (2014) applied artificial neural networks, 

Bayesian neural networks, and adaptive neuro-

fuzzy inference system for the prediction of 

groundwater level [26]. Ghadimi (2015) predicted 

heavy metals (Pb, Zn, and Cu) in the groundwater 

from Arak city using the ANN algorithm by 

taking major elements (HCO3, SO4) in the 

groundwater from Arak city [27]. 

This paper focuses on predicting the distribution 

of heavy metals in groundwater resources 

impacted by Lakan lead-zinc processing plant 

near the city of Khomein, central Iran. The 

objectives of this study were as follow: 1) to 

explore applications of the MANFIS, ANN, and 

ANN-BBO methods in predicting heavy metals in 

AMD 2) to develop a model based on MANFIS, 

and evaluate the applicability of the ANFIS 

approach to assess and predict heavy metals in 

AMD, and compare the performance with ANN 3) 

to provide useful information regarding the 

environmental management of lead and zinc 

processing plants. 

2. Hydrogeological setting and sampling 

The Lakan mining area is located near the city of 

Khomein, central Iran. A tailings dam, a lead-zinc 

processing plant, and a lead-zinc mine are located 

40 km from Khomein city. The region is underlain 

by the crystalline limestone of Cretaceous period 

and the low-grade metamorphic rocks (Figure 1) 

in Sannandaj-Sirjan metamorphic belt [28]. A 

shallow aquifer was developed into the 

Quaternary sediments, which are underlain by 

limestone bedrock. The mining activities in the 

region commenced in 1990. During the 

operational period of the mine, mining wastes 

were discharged from the mine to a tailings site 

200 meters downstream from the mine and 

directly to a river. The oxidation of sulfide 

minerals in mine wastes has caused metals and 

other chemical constituents to be leached to 

groundwater. Groundwater was thus exposed to 

severe heavy metal pollution from the tailings 

materials and other mine wastes. 



Bayatzadeh Fard et al./ Journal of Mining & Environment, Vol.8, No.1, 2017 

 

37 

 

52 groundwater samples were collected from 

around the Lakan mining area in February 2008 

(some are shown in Figure 1). Hydro-chemical 

parameters of water samples including Fe, Mn, 

Pb, Zn, Hg, Cl, SO4 ions, cyanide, and TDS were 

measured by inductively-coupled plasma mass 

spectrometer (ICP-MS) in the uranium conversion 

facility (UCF) Company [29]. 

 
Figure 1. Geological map of the desired area. 

3. Data analysis 

In order to analyze the data, different modeling 

methods were employed in this study. The 

following sections describe implementation of the 

aforementioned methods to predict the 

distribution of heavy metals in groundwater. 

Subsequently, concentrations of the heavy metals 

obtained in the laboratory were compared with 

their corresponding predicted concentrations. 

Descriptive statistics of the data are shown in 

Table 1. 

 
Table 1. Descriptive statistics of data. 

Variabl

es 

Vali

d N 

Mea

n 

Minimu

m 

Maximu

m 

Standar

d 

deviatio

n 

SO4 52 167 15 338 126 

Cl 52 4.27 0.01 13 3.74 

TDS 52 243 31 473 156 

Fe 52 0.16 0.01 0.68 0.19 

Mn 52 0.17 0.01 0.53 0.17 

Pb 52 0.08 0.01 0.22 0.06 

Zn 52 0.72 0.01 2.79 0.92 

For the purpose of calculation and modeling, a 

correlation matrix was created (). Using this table, 

the parameters SO4, Cl, and TDS were selected to 

be the model inputs due to their strong 

correlations with the heavy metal (Fe, Mn, Pb, 

and Zn) concentrations. The model outputs were 

concentrations of the heavy metals including Fe, 

Mn, Pb, and Zn. In this study, normalization of 

the data (inputs and outputs) was carried out in the 

range of (0, 1) using Eq. 1, and the number of 

training data (38) and test data (14) were then 

selected randomly. 

minmax

min

PP

PP
Pn




  (1) 

where nP  is the normalized parameter, p denotes 

the actual parameter, minP  represents a minimum 

of the actual parameters, and maxP  stands for a 

maximum of the actual parameters. Two criteria 

were used to evaluate the effectiveness of each 



Bayatzadeh Fard et al./ Journal of Mining & Environment, Vol.8, No.1, 2017 

 

38 

 

model and its ability to make accurate predictions. 

The mean square error (MSE) can be calculated as 

follows (Eq. 2): 

2

1

1
( )

n

i i

i

MSE y y
n 

   (2) 

Where iy  is the measured value, 
'

iy  denotes the 

predicted value, and n stands for the number of 

samples. MSE indicates the discrepancy between 

the measured and predicted values. The lower the 

MSE, the more accurate the prediction is. 

Furthermore, the efficiency criterion, 
2R , is 

given by Eq. 3: 

 
2

2 1

2

2 1

1

1

n

i ii

n

n ii
ii

y y
R

y
y

n








 









 

(3) 

where 
2R  efficiency criterion represents the 

percentage of the initial uncertainty explained by 

the model. The best fitting between the measured 

and predicted values, which is unlikely to occur, 

would have MSE = 0 and 
2R = 1. 

 
Table 1. Descriptive statistics of data. 

Variables Valid N Mean Minimum Maximum Standard deviation 

SO4 52 167 15 338 126 

Cl 52 4.27 0.01 13 3.74 

TDS 52 243 31 473 156 

Fe 52 0.16 0.01 0.68 0.19 

Mn 52 0.17 0.01 0.53 0.17 

Pb 52 0.08 0.01 0.22 0.06 

Zn 52 0.72 0.01 2.79 0.92 

 
Table 2. Correlation matrix between heavy metal concentrations and independent variables. 

 SO
4
 Cl TDS Fe Mn Pb Zn Hg CN 

SO
4
 1         

Cl 0.892 1        

TDS 0.919 0.890 1       

Fe ‒0.492 ‒0.560 ‒0.644 1      

Mn 0.579 0.461 0.640 ‒0.339 1     

Pb 0.628 0.628 0.536 ‒0.125 0.322 1    

Zn 0.701 0.568 0.774 ‒0.375 0.608 0.250 1   

Hg ‒0.178 ‒0.093 ‒0.048 ‒0.118 ‒0.180 ‒0.177 ‒0.137 1  

CN ‒0.166 ‒0.093 ‒0.068 ‒0.076 ‒0.142 ‒0.162 ‒0.118 0.287 1 

4. A brief review of methods used in this study 

4.1. Artificial neural networks (ANNs) 

Since 1940s, ANNs have been used in many 

applications in engineering and science [30]. The 

principles of ANNs are based upon the human 

brain operations. Actually, ANNs try to imitate 

the way that human brain solves the problems or 

remembers things. ANNs have different structures 

including at least two layers (input and output 

layers). Between these two layers, there can be 

one or more layers called hidden layers. Each 

layer consists of several neurons depending on the 

position of the layer. The number of neurons in 

the input layer represents the number of 

parameters used for prediction, and the number of 

neurons in the output layer represents the number 

of variables to be predicted. The neurons in the 

hidden layers are arranged arbitrarily. The 

neurons of a layer are joined to the neighbor layer 

neurons by connections called weights. Pairs of 

inputs and outputs are fed to the ANN, and the 

network creates the initial weights randomly. The 

objective is to find the value of the weight that 

minimizes the differences between the actual 

output and the predicted output in the output layer 

in order to minimize the mean square errors 

(MSEs), the average squared error between the 

network predicted outputs and the target output 

[31]. This process is called learning in the ANN. 

There are large numbers of different algorithms 

adjusting the weights. 

Multilayer perceptron is a feed-forward neural 

network, where signals always travel in the 

direction of the output layer. A typical multilayer 

perceptron with one hidden layer can be 

mathematically expressed as indicated in Eqs. 4-7. 
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The outputs of the hidden layer (Zj) are obtained 

as (1) summing the products of the inputs (Xi) and 

weight vectors (aij) and a hidden layer bias term 

(a0j; see Eq. 4), and (2) transforming this sum 

using transfer function g (see Eq. 5). The most 

widely used transfer functions are logistic and 

hyperbolic tangents. Similarly, the outputs of the 

output layer (Yk) are obtained by (1) summing the 

products of the hidden layer outputs (Zj) and 

weight vectors (bjk) and output layer bias term 

(b0k; see Eq. 6 and Figure 2), transforming this 

sum using transfer function g (see Eq. 7 and 

Figure 2). 

0

1

inpN

j i ij j

i

u x a a


   (4) 

 j jZ g u  (5) 

0

1

hidN

k j jk k

j

v Z b b


   (6) 

 Yk kg v  (7) 

 
Figure 2. Multilayer perceptron neural networks. 

4.2. Biogeography-based optimization (BBO) 

Biogeography-based optimization (BBO) is an 

evolutionary algorithm that is inspired by 

biogeography [33]. In BBO, a biogeography 

habitat indicates a candidate optimization problem 

solution, and it is comprised of a set of features, 

which are also called decision variables or 

independent variables. A set of biogeography 

habitats denotes a population of candidate 

solutions, and the habitat suitability index (HSI) in 

biogeography denotes the fitness of a candidate 

solution. Like other evolutionary algorithms, each 

candidate solution in BBO probabilistically shares 

the decision variables with other candidate 

solutions to improve the candidate solution 

fitness. This sharing process is analogous to 

migration in biogeography, i.e. each candidate 

solution immigrates decision variables from other 

candidate solutions based on its immigration rate, 

and emigrates decision variables to other 

candidate solutions based on its emigration rate. 

BBO consists of two main steps, migration and 

mutation. This algorithm can be used to optimize 

the ANN parameters. In this study, we used BBO 

to better regulate the weights and biases of the 

ANN model. 

4.3. Adaptive neuro-fuzzy inference system 

(ANFIS) 

The fuzzy logic system forms a system with the 

help of fuzzy rules [34]. ANFIS is a multilayer 

(five-layer) feed-forward network that uses neural 

network learning algorithms and fuzzy logic to 

map an input space to an output space. Each layer 

contains several nodes described by the node 

function. The adaptive nodes denoted by squares 

represent the parameter sets that are adjustable in 

these nodes and are changed in each of the 

learning iterations, whereas the fixed nodes, 

denoted by circles, represent the parameter sets 

that are fixed in the system. There are three types 

of ANFIS techniques, namely grid partitioning 

(GP), subtractive clustering method (SCM), and 

fuzzy C-means (FCM) techniques. The GP 

method generates a single-output Sugeno-type FIS 

on the data. The SC and FCM methods can be 

used for multi-output ANFIS. In these methods, 

depending on the types of inference operations 

upon ‘‘if-then rules”, they can be classified into 

two types, namely Mamdani’s system and 

Sugeno’s system. Mamdani’s system is the most 

commonly used one in various applications. 

Sugeno’s system is also more compact and 

computationally efficient than the Mamdani’s 

system [35]. 

For a first-order Sugeno fuzzy model, a typical 

rule set with two fuzzy if-then rules, can be 

expressed as follows: 

1 1

x y

1 1 1 1

Rule 1: if x is A y is B ,

then f p q r  
 (8) 

2

x y

2 2 2 2

Rule 2 : if x is A y is B2,

then f p q r  
 (9) 

where x  and y are inputs, and f is output. 1A , 

2A , 1B , and 2B  are non-linear parameters, and 1p

, 2p , 1q , and 2q  are linear parameters. The outputs 

of each node in layer 1 are calculated as: 

1,
( )

iAi
xo 

     
for i=1,2 (10) 
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1,
( )

i zBi
yo 




    
for i=3,4 (11) 

where 
1,io is the output of the i

th
 node of first 

layer, and ( )x  and ( )y  represent the 

appropriate parameterized MFs. The adaptive 

nodes can adopt any fuzzy membership function 

(MF). It should be noted that a bell-shaped 

membership function is generally used as the 

input MF (Eq. 12): 

22,

1

1

bii

i

i

x c

a

o 
 

  
 

 

(12) 

where ia and ib change the width of the curve, and 

ic  indicates the center of the curve. In the second 

layer of ANFIS, which is labeled as sign ‘  ’, the 

outputs of the previous layer are multiplied by 

each other in the related node. 

2, ( ) ( )
i ii A Bo x y  

      
for i=1,2 (13) 

where 2,io  is the output of the i
th
 node of the 

second layer. The number of nodes in layer 2 is 

dictated by fuzzy rules, and each node in the layer 

is considered as a fixed node. The normalization 

of the pervious layer is described by the following 

equation: 

3,

1 2

i
i i

w
o w

w w
 


       for i=1,2 (14) 

Each node in the third layer is a fixed one, which 

is labeled as ‘‘Norm’’. In layer 4, the outputs are 

calculated as follows: 

4,i i io w f  

All of the outputs of the 4
th
layer are added to the 

5
th
layer with a single node, which is labeled as 

‘‘Sum’’. The node in the 5
th
layer computes the 

output of the whole network: 

5,

1

i i i

i

o w f


  

However, in this study, we used the multi-output 

ANFIS (MANFIS), and so a simple example with 

one input one rule first-order Sugeno and three 

outputs for this method are listed below (Figure 3) 

[35]. 

 

 
Figure 3. MANFIS architecture with three outputs [35]. 

 

Layer 1. Generate the membership grades: 

1 ( )io g x  (15) 

where g is the membership function of the 

MANFIS system. 

Layer 2. Generate the firing strengths: 

2 ( )
1

i i

m
o w g x

j
 


  

(16)

 

Layer 3. Normalize the firing strengths: 

3

1 2 3

i
ii

w
o w

w w w
 

 
 (17)

 

Layer 4. Calculate the rule outputs based on the 

consequent parameters: 
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4
.f .(p . . )    i ii i i i i i

o y w w x q x r  (18) 

4
.f .(p . . )        i ii i i i i i

o y w w x q x r  (19) 

4 .f .(p . . )        i ii i i i i io y w w x q x r  (20) 

Layer 5. Sum all the inputs from layer 4: 

5

1 1

. f .(p . . )

 

      
n n

i ii a i i i i i

i i

o y y w w x q x r  (21) 

5

1 1

.f .(p . . )

 

          
n n

i ii b i i i i i

i i

o y y w w x q x r  (22) 

5

1 1

.f .(p . . )

 

          
n n

i ii c i i i i i

i i

o y y w w x q x r  (23) 

MANFIS for the three outputs comprises a lone 

input, thus there are no therefore rules of 

inference for this system, although there exists an 

operation of fuzzification and a defuzzification 

similar to that for ANFIS of one output [36]. 

5. Results and discussion 

5.1. Prediction of distribution of heavy metals 

using ANN model 

In this section, 73% of the datasets were assigned 

for training purposes, while 27% was used for 

testing the network performance(see Tables 3 and 

4). The performance of an ANN is related to the 

architecture of layers and the number of neurons, 

which is the pattern of the connections between 

the neurons [32]. In order to obtain the best 

performance of the ANN model, it is necessary to 

define the optimal network architecture. Part of 

the sensitivity analysis of this model is shown in 

Table 3 and Table 4. The optimal network for this 

study is a feed forward multilayer perceptron 

having one input layer with three inputs (SO4, Cl 

and TDS) and one hidden layer with seven 

neurons, and is fully connected to all inputs, and 

utilizes hyperbolic tangent sigmoid activation 

function (tansig). The output layer has four 

neurons (Fe, Mn, Pb, and Zn) with a sigmoid 

hyperbolic logarithm activation function (logsig). 

Figure 4 shows the neural network architecture. 

 
Table 3. Part of the sensitivity analysis of ANN model for training data. 

   
Table 4. Part of the sensitivity analysis of ANN model for testing data. 

 
Figure 4. A neural network architecture. 

SO 

TDS

CL

Fe

Input layer Output layer

Hidden layer

Mn

Pb

Zn

Model 

architecture 
Activation functions 

Fe Mn Pb Zn 

R
2 

MSE R
2 

MSE R
2 

MSE R
2 

MSE 

3-5-3-4 TanSig-TanSig-TanSig 0.44 0.05 0.25 0.04 0.53 0.08 0.02 0.69 

3-3-3-4 LogSig-LogSig-LogSig 0.43 0.06 0.46 0.03 0.50 0.05 0.16 0.13 

3-7-8-4 Purelin-Purelin-Purelin 0.42 0.05 0.47 0.03 0.40 0.06 0.32 0.06 

3-8-13-4 LogSig-LogSig-LogSig 0.57 0.04 0.54 0.03 0.59 0.05 0.58 0.04 

3-6-4 TanSig-LogSig 0.45 0.06 0.49 0.04 0.47 0.06 0.51 0.05 

3-7-4 TanSig-TanSig 0.70 0.03 0.69 0.02 0.54 0.06 0.58 0.04 

3-7-4 TanSig-LogSig 0.71 0.03 0.72 0.01 0.79 0.02 0.79 0.02 

Model 

architecture 
Activation functions 

Fe Mn Pb Zn 

R
2 

MSE R
2 

MSE R
2 

MSE R
2 

MSE 

3-5-3-4 TanSig-TanSig-TanSig 0.21 0.02 0.10 0.25 0.53 0.18 0.02 0.5636 

3-3-3-4 LogSig-LogSig-LogSig 0.22 0.01 0.04 0.19 0.72 0.15 0.06 0.30 

3-7-8-4 Purelin-Purelin-Purelin 0.52 0.04 0.15 0.16 0.31 0.04 0.17 0.15 

3-8-13-4 LogSig-LogSig-LogSig 0.15 0.01 0.50 0.17 0.65 0.04 0.01 0.24 

3-6-4 TanSig-LogSig 0.34 0.25 0.47 0.12 0.12 0.28 0.49 0.14 

3-7-4 TanSig-TanSig 0.43 0.02 0.51 0.11 0.63 0.12 0.48 0.13 

3-7-4 TanSig-LogSig 0.54 0.01 0.59 0.07 0.68 0.02 0.52 0.08 
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5.2. Prediction of distribution of heavy metals 

using hybrid ANN with BBO 

In this section, we used BBO to better regulate the 

weights and biases of the ANN model (in the 

previous section). Part of the sensitivity analysis 

of this model is shown in Tables 5 and 6. The 

optimal network for this study having one input 

layer with three inputs (SO4, Cl, and TDS), one 

hidden layer with twelve neurons, and sigmoid 

hyperbolic tangent (tansig) activation function. 

The output layer has four neurons (Fe, Mn, Pb, 

and Zn) with a sigmoid hyperbolic logarithm 

(logsig) activation function. Figure 5 shows the 

architecture of the ANN-BBO model. Also the 

control parameters used for running BBO is 

shown in Table 7. 

 
Table 5. Part of the sensitivity analysis of the ANN-BBO model for training data. 

 

Table 6. Part of the sensitivity analysis of the ANN-BBO model for testing data. 

 

 
Figure 5. Architecture of e ANN-BBO model. 
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Model 

architecture 
Activation functions 

Fe Mn Pb Zn 

R
2 

MSE R
2 

MSE R
2 

MSE R
2 

MSE 

3-5-3-4 TanSig-TanSig-TanSig 0.32 0.08 0.53 0.03 0.85 0.05 0.37 0.11 

3-5-8-4 LogSig-LogSig-LogSig 0.54 0.04 0.61 0.03 0.60 0.07 0.54 0.04 

3-10-4 TanSig-LogSig 0.67 0.04 0.62 0.03 0.69 0.03 0.72 0.03 

3-5-4 TanSig-LogSig 0.65 0.04 0.53 0.05 0.44 0.11 0.85 0.02 

3-7-4 LogSig-LogSig 0.64 0.04 0.73 0.03 0.65 0.05 0.76 0.03 

3-7-4 TanSig-LogSig 0.78 0.02 0.71 0.02 0.75 0.05 0.66 0.04 

3-8-4 TanSig-LogSig 0.68 0.03 0.67 0.02 0.71 0.03 0.75 0.02 

3-12-4 TanSig-LogSig 0.85 0.02 0.78 0.02 0.73 0.05 0.83 0.02 

Model 

architecture 
Activation functions 

Fe Mn Pb Zn 

R
2 

MSE R
2 

MSE R
2 

MSE R
2 

MSE 

3-5-3-4 TanSig-TanSig-TanSig 0.41 0.01 0.56 0.44 0.58 0.18 0.45 0.71 

3-5-8-4 LogSig-LogSig-LogSig 0.67 0.07 0.54 0.13 0.62 0.08 0.22 0.14 

3-10-4 TanSig-LogSig 0.66 0.01 0.86 0.46 0.45 0.03 0.58 0.08 

3-5-4 TanSig-LogSig 0.67 0.01 0.59 0.08 0.48 0.14 0.77 0.05 

3-7-4 LogSig-LogSig 0.68 0.01 0.54 0.10 0.51 0.06 0.69 0.06 

3-7-4 TanSig-LogSig 0.66 0.01 0.69 0.08 0.77 0.19 0.68 0.07 

3-8-4 TanSig-LogSig 0.68 0.01 0.78 0.13 0.75 0.07 0.61 0.07 

3-12-4 TanSig-LogSig 0.69 0.01 0.78 0.05 0.79 0.13 0.70 0.06 
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Table 7. Control parameters used for running BBO. 

Value Definition 

900 Number of habitats (population size) 

200 Highest number of repeat algorithm steps 

0.9 Migration formula coefficient 

0.1 Percentage of mutation 

0.2 
Percentage of old population that is directly 

transferred to the new population 

 

5.3. Prediction of distribution of heavy metals 

using MANFIS-SCM model 

In this study, the MANFIS-SCM model was also 

applied for predicting Fe, Mn, Pb, and Zn. Similar 

to the ANN analyses part, all the datasets were 

distributed randomly to the training (73%) and 

testing (27%) datasets.  

Table 8 shows the characterizations of the 

MANFIS-SCM model. The optimal parameters of 

the MANFIS-SCM model are also shown in Table 

9. Part of the sensitivity analysis of this model is 

shown in Tables 10 and 11.  

Table 8. Characterizations of MANFIS-SCM model. 

Value  ANFIS parameter 

38 Number of training data pairs 

14 Number of testing data pairs 

Gaussianmf Input membership function 

Linear Output membership function 

38 Number of nodes 

16 Number of linear parameters 

24 Number of non-linear parameters 

40 Total number of parameters 

4 Number of fuzzy rules 

 

Table 9. Optimal parameters of MANFIS-SCM 

model. 

Value Parameter 

100 Number of periodic training Process 

0 Error goal 

0.01 Initial step size 

0.5 Step size decrease rate 

0.9 Step size increase rate 
 

 

Table 10. Part of the sensitivity analysis of MANFIS-SCM model for training data. 

Influence radius 
Number of periodic 

 training process 

Fe Mn Pb Zn 

R2 MSE R2 MSE R2 MSE R2 MSE 

1 1000 0.71 0.01 0.95 0.01 0.77 0.01 0.85 0.09 

0.3 50 0.99 0.01 0.99 0.01 0.99 0.01 0.99 0.01 

0.25 500 0.99 0.01 0.99 0.01 0.99 0.01 0.99 0.01 

0.4 1000 0.99 0.01 0.99 0.01 0.99 0.01 0.99 0.01 

0.82 500 0.98 0.01 0.93 0.01 0.88 0.01 0.98 0.01 

0.75 100 0.98 0.01 0.93 0.01 0.97 0.01 0.99 0.01 

0.65 100 0.99 0.01 0.98 0.01 0.98 0.01 0.99 0.01 

 

Table 11. Part of the sensitivity analysis of ANFIS model for testing data. 

Influence radius 
Number of periodic 

 training process 

Fe Mn Pb Zn 

R2 MSE R2 MSE R2 MSE R2 MSE 

1 1000 0.44 0.01 0.77 0.03 0.14 0.01 0.89 0.24 

0.3 50 0.21 0.03 0.64 0.05 0.32 0.08 0.37 4.93 

0.25 500 0.46 0.04 0.91 0.41 0.29 0.08 0.48 6.43 

0.4 1000 0.58 0.10 0.75 0.05 0.06 0.09 0.68 0.91 

0.82 500 0.38 0.01 0.82 0.03 0.09 0.01 0.60 1.05 

0.75 100 0.61 0.02 0.84 0.02 0.74 0.01 0.765 0.75 

0.65 100 0.60 0.05 0.92 0.01 0.85 0.01 0.78 0.69 
 
 

Table 12. A comparison between the results of 

intelligent models used for training data. 

R2 MSE Outputs Modeling approach 

0.99 0.01 Fe 

 

MANFIS-SCM model 

0.98 0.01 Mn 

0.98 0.01 Pb 

0.99 0.01 Zn 

0.85 0.02 Fe 
 

ANN-BBO model 

 

0.78 0.02 Mn 

0.73 0.05 Pb 

0.83 0.02 Zn 

0.71 0.03 Fe 

 

ANN model 

0.72 0.01 Mn 

0.79 0.02 Pb 

0.79 0.02 Zn 

 

Table 13. A comparison between the results of 

intelligent models used for testing data. 

R
2 

MSE Outputs Modeling approach 

0.60 0.05 Fe 

 

MANFIS-SCM model 

0.92 0.01 Mn 

0.84 0.01 Pb 

0.78 0.69 Zn 

0.69 0.01 Fe 
 

ANN-BBO model 

 

0.78 0.05 Mn 

0.79 0.12 Pb 

0.70 0.06 Zn 

0.54 0.01 Fe 

 

ANN model 

0.59 0.07 Mn 

0.68 0.02 Pb 

0.52 0.08 Zn 
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Figure 6. A comparison between the predicted values for metals by the ANN, ANN-BBO, and MANFIS-SCM 

models and measured values for training datasets. 
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Figure 6. Continued. 

 

 

 
Figure 7. A comparison between the predicted values for metals by ANN, ANN-BBO, and MANFIS-SCM models 

and measured values for testing datasets. 
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Figure 7. Continued. 

6. Conclusions 

High concentrations of Fe, Mn, Pb, and Zn were 

found in the groundwater of the Lakan lead-zinc 

minedue to impacts from historical mining 

operations. In this paper, theANN, ANN-BBO, 

and MANFIS-SCM modelswere developed to 

estimate the heavy metals concentrations in 

groundwater using SO4, Cl, and TDS as input 

parameters, and Fe, Mn, Pb, and Zn as output 

parameters, and the following remarks were 

concluded: 

 Implementation hybrid for BBO as an 

optimizer of connection weights of ANN to 

predict the heavy metal concentrations in 

groundwater was demonstrated in detail. 

 It was determined that the MANFIS-SCM 

model was a reliable technique for estimating 

heavy metals in groundwater with an 

acceptable degree of accuracy and robustness. 
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 چکیده:

ی هنوش  هنا  روش. در اینن تحیینب بنا اسنت اده از     استی معدنکاری ها تیفعالتعیین توزیع عناصر سنگین در آب زیرزمینی از مسائل با اهمیت در حوزه مدیریت و 

فنازی ننند    -ی جغرافیای زیستی و سیسنتم اسنتنتات تیبیینی ننرو    ساز نهیبهالگوریتم  -مصنوعی از جمله: شبکه عصبی مصنوعی، ترکیب شبکه عصبی مصنوعی

ر مننابع آلنودگی آب   مورد است اده قرار گرفت. به همین منظنو  ی تعیین توزیع عناصر سنگین در آب زیرزمینی در منییه معدنی لکان خمیننیب شیپخروجی برای 

و نهار خروجی( مورد آمنوزش و تسنت منورد تحلینل      ی )با سه ورودیساز مدلی کمّی موجود و نندین مدل هوش مصنوعی جهت ها دادهزیرزمینی با است اده از 

کنه اینن مندل بنرای      دهند  یمن ایج نشنان  فازی نند خروجی به عنوان بهترین مدل انتخاب شد. نتن  -، روش سیستم استنتات تیبییی نروها مدلقرار گرفت. از بین 

 ی تعیین توزیع عناصر سنگین در آب زیرزمینی از قابلیت بالایی برخوردار است.نیب شیپ

ی جغرافینای  سناز  ننه یبهفازی ننند خروجنی، عناصنر سننگین، الگنوریتم       -آب زیرزمینی، شبکه عصبی مصنوعی، سیستم استنتات تیبییی نرو کلمات کلیدی:

 .زیستی

 


