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Abstract

Determining the distribution of heavy metals in groundwater is important in developing appropriate
management strategies at mine sites. In this paper, the application of artificial intelligence (Al) methods to
data analysis, namely artificial neural network (ANN), hybrid ANN with biogeography-based optimization
(ANN-BBO), and multi-output adaptive neural fuzzy inference system (MANFIS) to estimate the
distribution of heavy metals in groundwater of Lakan lead-zinc mine is demonstrated. For this purpose, the
contamination groundwater resources were determined using the existing groundwater quality monitoring
data, and several models were trained and tested using the collected data to determine the optimum model
that used three inputs and four outputs. A comparison between the predicted and measured data indicated
that the MANFIS model had the most potential to estimate the distribution of heavy metals in groundwater
with a high degree of accuracy and robustness.
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1. Introduction

Mining and mine-related industries have the
potential significant environmental impacts due to
the formation of acid drainage, and the release of
toxic compounds such as heavy metals into
groundwater. Acid mine drainage (AMD)
generated through the oxidation of sulfide
minerals such as pyrite, marcasite, and jarosite is
characterized by high concentrations of iron,
dissolved sulfate, low pH, and variable
concentrations of metals and rare earth elements
(REES) [1]. In particular, toxic metals such as Pb,
Zn, Cu, Mn, and Cd are released into the
environment under the condition of low pH,
which can be harmful to the living organisms. The
common methods used for measuring heavy
metals in AMD are time-consuming and may be
prohibitively-expensive in countries with limited
resources. Therefore, other tools are required to
determine the distribution of groundwater
contamination at mine sites that use analytes that
can be sampled and analyzed more cheaply, and
that can be used as proxies for the distribution of

metals in groundwater. Artificial intelligence (Al)
techniques are among the most used to assess the
groundwater quality data. The algorithms and
methods studied in Al include knowledge-based
systems (KBSs), genetic algorithms (GAs),
biogeography-based optimization (BBO), artificial
neural networks (ANNSs), fuzzy logic (FL), and
adaptive neural fuzzy inference system (ANFIS).
Recent investigations have highlighted the
application of the Al techniques to the
environmental engineering problems. ANNs have
obtained an increasing recognition in different
environmental engineering fields in the past few
decades because of their ability to extract complex
and non-linear relationships from datasets. Rogers
and Dowla (1994) began to optimize groundwater
remediation using an ANN with a parallel solute
transport modeling [2]. Schleiter et al. (1999)
modeled water quality, bio-indication, and
population dynamics in ecosystems using ANN
[3]. Cigizoglu (2002)estimated the suspended
sediment for rivers using ANN and sediment
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rating curves [4]. Kemper and Sommer (2002)
anticipated the heavy metal concentration in soils
from reflectance spectroscopy using back-
propagation neural network (BPNN) and multiple
linear regression(MLR) [5]. Liu et al. (2004)
evaluated the ability of a BPNN model to forecast
the variation in the groundwater quality of an area
in Taiwan [6]. Almasri and Kaluarachchi
(2005)used the modular neural networks to
forecast the nitrate distribution in groundwater
using the on-ground nitrogen-loading and
recharge data [7]. Palani et al. (2008)used ANN to
predict and  forecast the  quantitative
characteristics of Singapore coastal water bodies
[8]. Noori et al. (2010)used ANN and principal
component analysis-MLR models in order to
forecast the river flow based on the developed
discrepancy ratio statistic [9]. Rooki et al. (2011)
predicted heavy metals in AMD using BPNN,
general regression neural network (GRNN), and
MLR in the Shur River of the Sarcheshmeh
porphyry copper mine, SE of Iran [10]. Heydari et
al. (2013) developed the ANN models to calculate
the monthly values of dissolved oxygen and
specific conductance as two water quality
parameters of Delaware River at a station situated
at Pennsylvania site in the US [11]. Badaoui et al.
(2013)applied an ANN of MLP type for the
anticipation of the levels of heavy metals in
Moroccan aquatic sediments [12].
Irfan Yesilnacarand Sahinkaya (2012) applied
ANN for prediction of sulfate and SAR in an
unconfined aquifer in Turkey [13]. Keskinet al.
(2015) used ANN for the prediction of water
pollution sources in Turkey [14]. Nasr and Zahran
(2014)used pH as a tool to predict salinity of
groundwater for the irrigation purpose using
ANNs [15]. Grande et al. (2009) applied a fuzzy
logic qualitative model to the presence of As in
the fluvial network due to the AMD processes in
the RioTinto mining area (SW Spain) [16]. Yan et
al. (2010)developed ANFIS for the classification
of water quality status [17]. Sahu et al. (2010)
used fuzzy logic and ANN models to predict the
spontaneous heating susceptibility of Indian coals
[18]. Valente et al. (2013) used the fuzzy
inference system to estimate the concentration of
metals in AMD [19]. Mohammadi and Meech
(2012) applied the AFRA-heuristic expert system
to assess the atmospheric risk of sulfide waste
dumps [20]. Zhang et al. (2012) used fuzzy
cognitive maps and policy option simulations
analysis for a coalmine ecosystem in China [21].
Liu and Zou (2012) used improved fuzzy matter-
element method to evaluate water quality in China
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[22]. Pourjabbar et al. (2014) used fuzzy divisive
hierarchical clustering (FDHC) and fuzzy
hierarchical ~ cross-clustering  (FHCC) to
investigate the source of contamination near an
abandoned uranium mine in Germany [23].
Mahdevari et al. (2014) used the fuzzy TOPSIS
model to assess the human health and safety risks
in underground coal mines [24]. Chang et al.
(2014) used the neuro-fuzzy networks with factor
analysis to assess arsenic concentration in Huang
gang Creek in northern Taiwan [25]. Maiti and
Tiwari (2014) applied artificial neural networks,
Bayesian neural networks, and adaptive neuro-
fuzzy inference system for the prediction of
groundwater level [26]. Ghadimi (2015) predicted
heavy metals (Pb, Zn, and Cu) in the groundwater
from Arak city using the ANN algorithm by
taking major elements (HCO; SO,) in the
groundwater from Arak city [27].

This paper focuses on predicting the distribution
of heavy metals in groundwater resources
impacted by Lakan lead-zinc processing plant
near the city of Khomein, central Iran. The
objectives of this study were as follow: 1) to
explore applications of the MANFIS, ANN, and
ANN-BBO methods in predicting heavy metals in
AMD 2) to develop a model based on MANFIS,
and evaluate the applicability of the ANFIS
approach to assess and predict heavy metals in
AMD, and compare the performance with ANN 3)
to provide useful information regarding the
environmental management of lead and zinc
processing plants.

2. Hydrogeological setting and sampling

The Lakan mining area is located near the city of
Khomein, central Iran. A tailings dam, a lead-zinc
processing plant, and a lead-zinc mine are located
40 km from Khomein city. The region is underlain
by the crystalline limestone of Cretaceous period
and the low-grade metamorphic rocks (Figure 1)
in Sannandaj-Sirjan metamorphic belt [28]. A
shallow aquifer was developed into the
Quaternary sediments, which are underlain by
limestone bedrock. The mining activities in the
region commenced in 1990. During the
operational period of the mine, mining wastes
were discharged from the mine to a tailings site
200 meters downstream from the mine and
directly to a river. The oxidation of sulfide
minerals in mine wastes has caused metals and
other chemical constituents to be leached to
groundwater. Groundwater was thus exposed to
severe heavy metal pollution from the tailings
materials and other mine wastes.
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52 groundwater samples were collected from
around the Lakan mining area in February 2008
(some are shown in Figure 1). Hydro-chemical
parameters of water samples including Fe, Mn,

Pb, Zn, Hg, Cl, SO, ions, cyanide, and TDS were
measured by inductively-coupled plasma mass
spectrometer (ICP-MS) in the uranium conversion
facility (UCF) Company [29].
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3. Data analysis

In order to analyze the data, different modeling
methods were employed in this study. The
following sections describe implementation of the
aforementioned methods to predict the
distribution of heavy metals in groundwater.
Subsequently, concentrations of the heavy metals
obtained in the laboratory were compared with
their corresponding predicted concentrations.
Descriptive statistics of the data are shown in
Table 1.

Table 1. Descriptive statistics of data.

Standar
Variabl Vali Mea Minimu Maximu d
es dN n m m deviatio
n
SO4 52 167 15 338 126
Cl 52 4.27 0.01 13 3.74
TDS 52 243 31 473 156
Fe 52 0.16 0.01 0.68 0.19
Mn 52 0.17 0.01 0.53 0.17
Pb 52 0.08 0.01 0.22 0.06
Zn 52 0.72 0.01 2.79 0.92
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Figure 1. Geological map of the desired area.

For the purpose of calculation and modeling, a
correlation matrix was created (). Using this table,
the parameters SO,, Cl, and TDS were selected to
be the model inputs due to their strong
correlations with the heavy metal (Fe, Mn, Pb,
and Zn) concentrations. The model outputs were
concentrations of the heavy metals including Fe,
Mn, Pb, and Zn. In this study, normalization of
the data (inputs and outputs) was carried out in the
range of (0, 1) using Eqg. 1, and the number of
training data (38) and test data (14) were then
selected randomly.

P-P.
Pn — min (1)
I:)max - I:)min
where P, is the normalized parameter, p denotes
the actual parameter, P . represents a minimum

of the actual parameters, and P, stands for a

maximum of the actual parameters. Two criteria
were used to evaluate the effectiveness of each
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model and its ability to make accurate predictions.
The mean square error (MSE) can be calculated as
follows (Eq. 2):

Zn:(Yi _Yi')2

i=1

MSE =% ?)

Where Y, is the measured value, y, denotes the

predicted value, and n stands for the number of
samples. MSE indicates the discrepancy between
the measured and predicted values. The lower the
MSE, the more accurate the prediction is.

Furthermore, the efficiency criterion, R2, is
given by Eq. 3:

R2_1_ Zin:l()'i_yi')z
PED YN
IR

where R? efficiency criterion represents the
percentage of the initial uncertainty explained by
the model. The best fitting between the measured
and predicted values, which is unlikely to occur,

would have MSE =0 and R?=1.

®3)

Table 1. Descriptive statistics of data.

Variables ValidN Mean Minimum Maximum Standard deviation
SO, 52 167 15 338 126
Cl 52 4.27 0.01 13 3.74
TDS 52 243 31 473 156
Fe 52 0.16 0.01 0.68 0.19
Mn 52 0.17 0.01 0.53 0.17
Pb 52 0.08 0.01 0.22 0.06
Zn 52 0.72 0.01 2.79 0.92

Table 2. Correlation matrix between heavy metal concentrations and independent variables.

SO, Cl TDS Fe Mn Pb Zn Hg CN
SO, 1
Cl | 0.892 1
TDS | 0.919 0.890 1
Fe | -0.492 -0.560 -0.644 1
Mn | 0579 0461 0.640 -0.339 1
Pb | 0628 0.628 0536 -0.125 0.322 1
Zn | 0701 0568 0.774 -0.375 0.608 0.250 1
Hg | -0.178 -0.093 -0.048 -0.118 -0.180 -0.177 -0.137 1
CN | -0.166 -0.093 -0.068 -0.076 -0.142 -0.162 -0.118 0.287 1

4. A brief review of methods used in this study
4.1. Artificial neural networks (ANNSs)

Since 1940s, ANNs have been used in many
applications in engineering and science [30]. The
principles of ANNs are based upon the human
brain operations. Actually, ANNs try to imitate
the way that human brain solves the problems or
remembers things. ANNSs have different structures
including at least two layers (input and output
layers). Between these two layers, there can be
one or more layers called hidden layers. Each
layer consists of several neurons depending on the
position of the layer. The number of neurons in
the input layer represents the number of
parameters used for prediction, and the number of
neurons in the output layer represents the number
of variables to be predicted. The neurons in the
hidden layers are arranged arbitrarily. The
neurons of a layer are joined to the neighbor layer
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neurons by connections called weights. Pairs of
inputs and outputs are fed to the ANN, and the
network creates the initial weights randomly. The
objective is to find the value of the weight that
minimizes the differences between the actual
output and the predicted output in the output layer
in order to minimize the mean square errors
(MSEs), the average squared error between the
network predicted outputs and the target output
[31]. This process is called learning in the ANN.
There are large numbers of different algorithms
adjusting the weights.

Multilayer perceptron is a feed-forward neural
network, where signals always travel in the
direction of the output layer. A typical multilayer
perceptron with one hidden layer can be
mathematically expressed as indicated in Egs. 4-7.
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The outputs of the hidden layer (Z;) are obtained
as (1) summing the products of the inputs (X;) and
weight vectors (a;) and a hidden layer bias term
(agj; see Eqg. 4), and (2) transforming this sum
using transfer function g (see Eg. 5). The most
widely used transfer functions are logistic and
hyperbolic tangents. Similarly, the outputs of the
output layer (Y) are obtained by (1) summing the
products of the hidden layer outputs (Z;) and
weight vectors (bj) and output layer bias term
(box; see Eqg. 6 and Figure 2), transforming this
sum using transfer function g (see Egq. 7 and
Figure 2).

Ninp

Uj =D %ay +a, (4)

() ®)
Vv, = :‘hZiZjbjk oy, (6)
Ye=9(v%) (7)

Figure 2. Multilayer perceptron neural networks.

4.2. Biogeography-based optimization (BBO)

Biogeography-based optimization (BBO) is an
evolutionary algorithm that is inspired by
biogeography [33]. In BBO, a biogeography
habitat indicates a candidate optimization problem
solution, and it is comprised of a set of features,
which are also called decision variables or
independent variables. A set of biogeography
habitats denotes a population of candidate
solutions, and the habitat suitability index (HSI) in
biogeography denotes the fitness of a candidate
solution. Like other evolutionary algorithms, each
candidate solution in BBO probabilistically shares
the decision variables with other candidate
solutions to improve the candidate solution
fitness. This sharing process is analogous to
migration in biogeography, i.e. each candidate
solution immigrates decision variables from other
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candidate solutions based on its immigration rate,
and emigrates decision variables to other
candidate solutions based on its emigration rate.
BBO consists of two main steps, migration and
mutation. This algorithm can be used to optimize
the ANN parameters. In this study, we used BBO
to better regulate the weights and biases of the
ANN model.

4.3. Adaptive neuro-fuzzy inference system
(ANFIS)

The fuzzy logic system forms a system with the
help of fuzzy rules [34]. ANFIS is a multilayer
(five-layer) feed-forward network that uses neural
network learning algorithms and fuzzy logic to
map an input space to an output space. Each layer
contains several nodes described by the node
function. The adaptive nodes denoted by squares
represent the parameter sets that are adjustable in
these nodes and are changed in each of the
learning iterations, whereas the fixed nodes,
denoted by circles, represent the parameter sets
that are fixed in the system. There are three types
of ANFIS techniques, namely grid partitioning
(GP), subtractive clustering method (SCM), and
fuzzy C-means (FCM) techniques. The GP
method generates a single-output Sugeno-type FIS
on the data. The SC and FCM methods can be
used for multi-output ANFIS. In these methods,
depending on the types of inference operations
upon ‘‘if-then rules”, they can be classified into
two types, namely Mamdani’s system and
Sugeno’s system. Mamdani’s system is the most
commonly used one in various applications.
Sugeno’s system is also more compact and
computationally efficient than the Mamdani’s
system [35].

For a first-order Sugeno fuzzy model, a typical
rule set with two fuzzy if-then rules, can be
expressed as follows:

Rule 1: if x is A y is B,
then f,=p; +q) +r,
Rule 2: if x is A, y is B2,
then f,=p;+q}+r,

(8)

)

where x and y are inputs, and f is output. A,
A,, B, and B, are non-linear parameters, and p,

, P,,0,, and ¢, are linear parameters. The outputs
of each node in layer 1 are calculated as:

fori=1,2

Oy = Ha, () (10)
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O, =Hs, (y) fori=34 (11)
where Q,, is the output of the i node of first
layer, andg(x) and u(y) represent the

appropriate parameterized MFs. The adaptive
nodes can adopt any fuzzy membership function
(MF). It should be noted that a bell-shaped
membership function is generally used as the
input MF (Eqg. 12):

1
0.~ 20
1+(X G J
q

where @ and b, change the width of the curve, and

(12)

C. indicates the center of the curve. In the second

I
layer of ANFIS, which is labeled as sign ‘IT ’, the
outputs of the previous layer are multiplied by
each other in the related node.

0, =ty (X)*p15 (y) fori=1,2  (13)

where O,; is the output of the i node of the

second layer. The number of nodes in layer 2 is
dictated by fuzzy rules, and each node in the layer

is considered as a fixed node. The normalization
of the pervious layer is described by the following
equation:

_ W,
05, =W; =

i (14)
W1 +W 2

fori=1,2

Each node in the third layer is a fixed one, which
is labeled as ““Norm’’. In layer 4, the outputs are
calculated as follows:

0, :V\Tifi

All of the outputs of the 4"layer are added to the
5™layer with a single node, which is labeled as
““Sum’’. The node in the 5"layer computes the
output of the whole network:

05 = ZV‘Tifi
i=1

However, in this study, we used the multi-output
ANFIS (MANFIS), and so a simple example with
one input one rule first-order Sugeno and three
outputs for this method are listed below (Figure 3)
[35].

Figure 3. MANFIS architecture with three outputs [35].

Layer 1. Generate the membership grades:

o/ =g(x)

where g is the membership function of the

MANFIS system.
Layer 2. Generate the firing strengths:

(15)

40

m
0_2 = .=
=w =TT e
Layer 3. Normalize the firing strengths:
0i3 -Wi=— 1
W, +W, +W,

Layer 4. Calculate the rule outputs based on the
consequent parameters:

(16)

(17)
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4

0, =Y, :VVi.fi :vvi.(pi X+, X +1,)

(18)

o' =y! =W, £ —w (p) X +q/x +r") (19

o/ =y!'=wi.f"=w.(o] x +q/x +r")  (20)
Layer 5. Sum all the inputs from layer 4:
oiszya:z y‘:z "‘Ti-fi :\;i.(pi.x+qi.x+rl) (21)

1}
N

Wi =wi(pl X +q/X +T)

n
oF =yp =) ¥i
i=1 i
n
0i5”:yc :z Yi
i=1

1}
LN

MANFIS for the three outputs comprises a lone
input, thus there are no therefore rules of
inference for this system, although there exists an
operation of fuzzification and a defuzzification
similar to that for ANFIS of one output [36].

5. Results and discussion

n
:Z wiff=wi.(pj x +gix+5)  (22)

(23)

5.1. Prediction of distribution of heavy metals
using ANN model

In this section, 73% of the datasets were assigned
for training purposes, while 27% was used for
testing the network performance(see Tables 3 and
4). The performance of an ANN is related to the
architecture of layers and the number of neurons,
which is the pattern of the connections between
the neurons [32]. In order to obtain the best
performance of the ANN model, it is necessary to
define the optimal network architecture. Part of
the sensitivity analysis of this model is shown in
Table 3 and Table 4. The optimal network for this
study is a feed forward multilayer perceptron
having one input layer with three inputs (SO,, ClI
and TDS) and one hidden layer with seven
neurons, and is fully connected to all inputs, and
utilizes hyperbolic tangent sigmoid activation
function (tansig). The output layer has four
neurons (Fe, Mn, Pb, and Zn) with a sigmoid
hyperbolic logarithm activation function (logsig).
Figure 4 shows the neural network architecture.

Table 3. Part of the sensitivity analysis of ANN model for training data.

Zn Pb Mn Fe o ] Model
MSE R’ MSE R?® MSE R® MSE R? Activation functions , iecture
069 002 008 053 004 025 005 044 TanSig-TanSig-TanSig 3-5-3-4
0.13 016 005 050 0.03 046 0.06 043 LogSig-LogSig-LogSig 3-3-3-4
006 032 006 040 003 047 0.05 042 Purelin-Purelin-Purelin 3-7-8-4
004 058 005 059 003 054 0.04 057 LogSig-LogSig-LogSig 3-8-13-4
005 051 006 047 004 049 0.06 045 TanSig-LogSig 3-6-4
004 058 006 054 002 069 0.03 0.70 TanSig-TanSig 3-7-4
002 079 002 079 001 072 0.03 0.71 TanSig-LogSig 3-7-4

Table 4. Part of the sensitivity analysis of ANN model for testing data.
Zn Pb Mn Fe o . Model
MSE R’ MSE R’ MSE R’ MSE g2 Actvationfunctions o iiecture
05636 002 018 053 025 010 002 021 TanSig-TanSig-TanSig 3-5-3-4
0.30 006 015 072 019 004 0.01 0.22 LogSig-LogSig-LogSig 3-3-3-4
0.15 0.17 0.04 0.31 0.16 0.15 0.04 0.52 Purelin-Purelin-Purelin 3-7-8-4
024 001 004 065 017 050 001 015 LogSig-LogSig-LogSig 3-8-13-4
014 049 028 012 012 047 025 034 TanSig-LogSig 3-6-4
0.13 048 012 063 011 051 002 043 TanSig-TanSig 3-7-4
0.08 052 002 068 007 059 001 054 TanSig-LogSig 3-7-4

Hidden layer

Figure 4. A neural network architecture.
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5.2. Prediction of distribution of heavy metals
using hybrid ANN with BBO

In this section, we used BBO to better regulate the
weights and biases of the ANN model (in the
previous section). Part of the sensitivity analysis
of this model is shown in Tables 5 and 6. The
optimal network for this study having one input
layer with three inputs (SO,, Cl, and TDS), one

hidden layer with twelve neurons, and sigmoid
hyperbolic tangent (tansig) activation function.
The output layer has four neurons (Fe, Mn, Pb,
and Zn) with a sigmoid hyperbolic logarithm
(logsig) activation function. Figure 5 shows the
architecture of the ANN-BBO model. Also the
control parameters used for running BBO is
shown in Table 7.

Table 5. Part of the sensitivity analysis of the ANN-BBO model for training data.

Zn Pb Mn Fe N . Model
MSE R. MSE R’ MSE R._MSE R Actvationfunctions . opiecture
011 037 005 085 003 053 008 032 TanSig-TanSig-TanSig 3-5-3-4
004 054 007 060 003 061 004 054 LogSig-LogSig-LogSig 3-5-8-4
003 072 003 069 003 062 004 067 TanSig-LogSig 3-10-4
002 085 011 044 005 053 0.04 065 TanSig-LogSig 3-5-4
003 076 005 065 003 073 0.04 064 LogSig-LogSig 3-7-4
004 066 005 075 0.02 071 002 0.78 TanSig-LogSig 3-7-4
002 075 003 071 002 067 003 0.68 TanSig-LogSig 3-8-4
002 083 005 073 0.02 078 002 085 TanSig-LogSig 3-12-4

Table 6. Part of the sensitivity analysis of the ANN-BBO model for testing data.

Zn Pb Mn Fe o ) Model
MSE R. MSE R’ MSE R’ MsSE R2  Actvationfunctions . oiiecture
071 045 018 058 044 056 001 041  TanSig-TanSig-TanSig 3-5-3-4
014 022 008 062 013 054 007 067 LogSig-LogSig-LogSig 3-5-8-4
008 058 003 045 046 086 0.01 0.66 TanSig-LogSig 3-10-4
005 077 014 048 0.08 059 001 0.67 TanSig-LogSig 3-5-4
006 069 006 051 010 054 0.01 0.68 LogSig-LogSig 3-7-4
007 068 019 077 008 069 001 066 TanSig-LogSig 3-7-4
007 061 007 075 013 078 0.01 0.68 TanSig-LogSig 3-8-4
006 070 013 079 005 078 001 0.69 TanSig-LogSig 3-12-4

Hidden layer
Input layer Output layer

Figure 5. Architecture of e ANN-BBO model.
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Table 7. Control parameters used for running BBO.

Definition Value Table 8. Characterizations of MANFIS-SCM model.
Number of habitats (population size) 900 ANFIS parameter Value
Highest number of repeat algorithm steps 200 Number of training data pairs 38
Migration formula coefficient 0.9 Number of testing data pairs 14
. ' Input membership function Gaussianmf
Percentage of mutatlon Lo 0.1 Output membership function Linear
Percentage of old population that |s-d|rectly 0.2 Number of nodes 38
transferred to the new population Number of linear parameters 16
Number of non-linear parameters 24
5.3. Prediction of distribution of heavy metals Total number of parameters 40
using MANFIS-SCM model Number of fuzzy rules 4

In this study, the MANFIS-SCM model was also
applied for predicting Fe, Mn, Pb, and Zn. Similar
to the ANN analyses part, all the datasets were
distributed randomly to the training (73%) and
testing (27%) datasets.

Table 8 shows the characterizations of the
MANFIS-SCM model. The optimal parameters of
the MANFIS-SCM model are also shown in Table
9. Part of the sensitivity analysis of this model is
shown in Tables 10 and 11.

Table 9. Optimal parameters of MANFIS-SCM

model.
Parameter Value
Number of periodic training Process 100
Error goal 0
Initial step size 0.01
Step size decrease rate 0.5
Step size increase rate 0.9

Table 10. Part of the sensitivity analysis of MANFIS-SCM model for training data.

Zn Pb Mn Fe Number of periodic Influence radius
MSE R? MSE R’ MSE R? MSE R’ training process
0.09 0.85 0.01 0.77 0.01 0.95 0.01 0.71 1000 1
0.01 0.99 0.01 0.99 0.01 0.99 0.01 0.99 50 0.3
0.01 0.99 0.01 0.99 0.01 0.99 0.01 0.99 500 0.25
0.01 0.99 0.01 0.99 0.01 0.99 0.01 0.99 1000 0.4
0.01 0.98 0.01 0.88 0.01 0.93 0.01 0.98 500 0.82
0.01 0.99 0.01 0.97 0.01 0.93 0.01 0.98 100 0.75
0.01 0.99 0.01 0.98 0.01 0.98 0.01 0.99 100 0.65

Table 11. Part of the sensitivity analysis of ANFIS model for testing data.

Zn Pb Mn Fe Number of periodic Infl di
MSE R= MSE R. MSE R. MSE R’ training process ntiuence radius
0.24 0.89 0.01 0.14 0.03 0.77 0.01 0.44 1000 1
4.93 0.37 0.08 0.32 0.05 0.64 0.03 0.21 50 0.3
6.43 0.48 0.08 0.29 0.41 0.91 0.04 0.46 500 0.25
0.91 0.68 0.09 0.06 0.05 0.75 0.10 0.58 1000 0.4
1.05 0.60 0.01 0.09 0.03 0.82 0.01 0.38 500 0.82
0.75 0.765 0.01 0.74 0.02 0.84 0.02 0.61 100 0.75
0.69 0.78 0.01 0.85 0.01 0.92 0.05 0.60 100 0.65

Table 12. A comparison between the results of
intelligent models used for training data.

Modeling approach  Outputs MSE R?
Fe 0.01 0.99

Mn 0.01 0.98

MANFIS-SCM model Pb 001 098
Zn 0.01 0.99

Fe 0.02 0.85

Mn 0.02 0.78

ANN-BBO model Pb 005 073
Zn 0.02 0.83

Fe 0.03 0.71

Mn 0.01 0.72

ANN model Pb 0.02 0.79

Zn 0.02 0.79
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Table 13. A comparison between the results of
intelligent models used for testing data.

Modeling approach  Outputs MSE R’
Fe 0.05 0.60

Mn 0.01 0.92

MANFIS-SCM model Pb 0.01 0.84
Zn 0.69 0.78

Fe 0.01 0.69

Mn 0.05 0.78

Zn 0.06 0.70

Fe 001 054

Mn 0.07 0.59

ANN model Pb 0.02 0.68

Zn 0.08 0.2
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Figure 6. A comparison between the predicted values for metals by the ANN, ANN-BBO, and MANFIS-SCM
models and measured values for training datasets.
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Figure 6. Continued.
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Figure 7. A comparison between the predicted values for metals by ANN, ANN-BBO, and MANFIS-SCM models
and measured values for testing datasets.

45



Bayatzadeh Fard et al./ Journal of Mining & Environment, Vol.8, No.1, 2017

1.2

—©— Measured ---@-- ANFIS-SCM

ANN+BBO = = ANNI

P and 'S

1 —=e

Mn (Test)

Number of samples

35
I —©— Measured ---@-- ANFIS-SCM ANN+BBO = <= ANNI
3
N O )
N &
25 /?’\‘
2
- [ i e
B 15 " ===
£ [ i
g 15 %
0.5 4 \ >
' \\ ——I"ﬁ ‘\ V4 \\ ,Il N ','
04— DS S s - TP VAP N | d
05 ¥ 2 4 \ 6 8 0] 12 14 13
! | G
-1.5
Number of samples
Figure 7. Continued.
6. Conclusions
High concentrations of Fe, Mn, Pb, and Zn were heavy metals in groundwater with an

found in the groundwater of the Lakan lead-zinc
minedue to impacts from historical mining
operations. In this paper, theANN, ANN-BBO,
and MANFIS-SCM modelswere developed to
estimate the heavy metals concentrations in
groundwater using SO,4 CI, and TDS as input
parameters, and Fe, Mn, Pb, and Zn as output
parameters, and the following remarks were
concluded:

o Implementation hybrid for BBO as an

optimizer of connection weights of ANN to

predict the heavy metal concentrations in

groundwater was demonstrated in detail.

e It was determined that the MANFIS-SCM

model was a reliable technique for estimating
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acceptable degree of accuracy and robustness.
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