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Abstract
An attempt has been made in this paper to investigate the effect of particle size distribution on coal flotation kinetics. 
The effect of particle size (Ps) on kinetics constant (k) and maximum theoretical flotation recovery (RI) was 
investigated while other operational parameters were kept constant. The relationship between flotation kinetics constant 
and theoretical flotation recovery with particle size was estimated with nonlinear equations. Analysis of variance 
showed that the effect of particle size on the kinetics constant was statistically significant at 95% confidence level. 
However, it was not significant on maximum theoretical flotation recovery (RI). Different regression methods were 
conducted in order to model the effect of coal particle size on flotation kinetics. Results indicated that the quadric 
regression method gave better prediction of the cumulative recovery for different particle size fractions. The correlation 
coefficient (R2) values of this model were 0.99, 0.996, 0.98, 0.98 and 0.97 for average of particle sizes of 37.5 µm, 
112.5 µm, 225 µm, 400 µm and 625 µm respectively. 
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1. Introduction
Froth flotation is a physicochemical method 
which is widely used in mineral processing 
technologies for the separation of finely ground 
valuable minerals from a mixture with gangue 
minerals initially present in a pulp. Since the 
cumulative recovery of a component in the 
concentrate is proportional to flotation time, the 
flotation process can be considered as a time-rate 
recovery process [1, 2]. Therefore, mathematical 
flotation models that incorporate both a recovery 
and a rate function can completely describe 
flotation time-recovery profiles. They provide an 
excellent tool to evaluate flotation tests. The 
general rate equation for flotation, demonstrated 
in Eq.1 [3].
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where Cp(t) and Cb(t) are the concentrations of 

the particles and bubbles at time t, respectively. 
The exponents, m and n are the respective orders 
for particles and bubbles, and k(t) is a pseudo rate 
constant that depends on various parameters 
governing the flotation process, and may vary 
with time.
There has been a great deal of discussion over the 
actual order of the flotation process [4-9]. Batch 
flotation test data in the literature support the first-
order rate equation under reasonable operating 
conditions [10-18]. A classical first order rate 
equation of the form:

)]exp(1[ ktRIR −−= (2) 
 

is proposed, where R is the cumulative recovery 
after time t, k is the first order rate constant (time-
l), t is the cumulative flotation time and RI is the 
maximum theoretical flotation recovery. In the 
derivation of this equation, it has been assumed 
that the only independent variable has been the 
concentration of floatable material, and that 
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everything else has remained constant including 
size and size distribution, bubble concentration, 
reagent concentrations, cell operation, etc  [18-
20]. 
RI (ultimate recovery) and k (first order rate 
constant) are obtained from adjustment of the 
model for an experimental recovery–time curve. 
They can be effectively used to evaluate variables 
affecting flotation process. Kinetics constant is 
complex and many authors have argued that the 
value of the kinetics constant is a function of 
hydrodynamic, chemical and operational 
parameters such as inducement time, aeration, 
reagent concentration, particle size, prior 
treatment, design of the flotation cell, etc [17, 21-
24]. 
Numerous researchers have studied the kinetics 
aspects of froth flotation paying special attention 
to particle size [3, 12, 24-29]. However, the form 
of the relationship between flotation rate and 
particle size is not yet clear. The most recent 
theoretical analyses suggest that,

mPsk ∝  (3) 

where k is a suitable measure of the flotation rate, 
Ps is particle size (diameter), and m is the number 
between 1.5 and 2 [20,24].
Regression analysis is one of the most used 
statistical tools by engineers and scientists. This 
study has examined the effects of particle size 
distribution on the coal flotation kinetics 
parameters (RI and k). Different regression 
methods were conducted to modeling the effect of 
coal particle size on flotation kinetics.

2. Experimental
A coal sample of about 50 kg was collected from 
the feed of the Zarand Coal Washing plant in Iran. 
The sample was screened at 0.85 mm for kinetics 
test. The collected sample was subsampled by 
coning and quartering to obtain a representative 
sample. The size distribution and ash analysis of 
the coal sample is provided in Table 1.
Kinetics test were carried out in a Denver 
laboratory flotation machine. The impeller speed, 
and solids content were kept constant at 1000 rpm 
and 10% (by weight), respectively. The collector 
used in these tests was gas oil (2.5 kg/t) and the 
frother was pine oil (230 g/t).
In flotation kinetics test, the pulp was first 
agitated in the flotation cell for 2 min, after which 
the required dosage of flotation reagents was 
added, and the slurry was conditioned for 5 min, 
Air was then introduced, and froth samples were 

collected after 10, 20, 30, 45, 60, 90, 120, 150, 
210 and 270 seconds. After the final froth sample 
was collected, the machine was stopped. Size-
wise and ash analysis for the five fractions, 
namely (-75, -150+75, -300+150, -500+300 and -
850+500 microns) was conducted for froth 
products and the tailings. 
Table 1. Size analysis and size-wise ash content of the 

sample
Size(micron) Wt(%) Ash(%)
-850+500 20.7 24.8
-500+300 13.2 22.4
-300+150 22.4 20.8
-150+75 15.9 21.1
-75 27.8 32.6
Total feed 100 25.2

Using the results of yield and ash percentages of 
the concentrates collected at different time 
intervals along with tailing weight, the cumulative 
recoveries of non-ash materials for each fraction 
were calculated as follows:

Re= Y(100−Ac)/(100−Af ) (4)
Where Re is the none ash recovery, Y is the 
percentage yield of the concentrate and Ac and Af
are the percentage ash contents of the concentrates 
and the feed materials, respectively.
Where Re is the none ash recovery, Y is the 
percentage yield of the concentrate and Ac and Af
are the percentage ash contents of the concentrates 
and the feed materials, respectively.

3- Results and discussion
3-1. Effect of particles size on flotation kinetics 
parameters
The recovery vs. time data for various size 
fractions were subjected to a curve fitting 
procedure using the first-order model. Figure 1
showes cumulative recovery of various size 
fractions of coal against flotation time based on 
the laboratory flotation test results. For each size 
fractions, kinetics parameters (RI and k) are 
summarized in Table 2.
The effect of particle size (Ps) on kinetics constant 
(k) and maximum theoretical flotation recovery 
(RI) was investigated when other operational 
parameters were kept constant. Particle size was 
considered as the independent variable (factor) 
and kinetics constant and maximum theoretical 
flotation recovery was selected as response.
Several empirical models were driven to describe 
the response as a function of individual
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Figure 1. Cumulative recovery of different fractions of 
coal particles against flotation time

Table 2. Kinetics parameters of the first-order model for 
various size fractions

Size(micron) k(min-1) RI(%)
-850+500 2.93 75.4
-500+300 2.24 88.9
-300+150 1.87 92.9
-150+75 1.26 87.5
-75 0.86 70.5

parameters, In this case, by using least square 
method, the empirical models (Eq. 5 and 6) were 
proposed to relate kinetics constant (k) and 
maximum theoretical flotation recovery (RI), to 
particle size (Ps).

0.6827+Ps*0.0055+Ps*10*3.02-k 2-6= (5)

149.25-ln(Ps)*92.65+(ln(Ps))*8.8904-RI 2= (6)

analysis of errors was conducted to assess the 
predictability of empirical models. Figure 2
illustrates linear plots of the calculated kinetics 
constant (k) and maximum theoretical flotation 
recovery (RI) against observed values, the
correlation coefficient (R2) values for kinetics 
constant and maximum theoretical flotation 
recovery were 0.989 and 0.999 respectively which 
indicates that these parameters can be predicted 
reasonably well.
Normal distribution of residuals of model is 
illustrated in Figure 3. As depicted in this figure, 
residuals of models followed a normal distribution 
describing that the predictability of the acceptable 
models are good.
Analysis of variance was conducted to asses the 
effect of particle size for kinetics constant and 
maximum theoretical flotation recovery 
statistically in Table 3. P-value for each term is 
estimated by a comparison between observed F-
value and standard F-value. Depending on the 
statistical significance level, if P-value falls below 
0.05, the term would be statistically significant 
[30].

Figure 2. Predicted responses against actual data

Figure 3. Normal plot of residuals
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Table 3. Analysis of variance, the effect of Ps vs. k and RI
Source Sum of squares DF Mean square F-value P-value Prob > F
k vs. Ps 207602.7 1 207602.7 6.392 0.035
RI vs.  Ps 107060.8 1 107060.8 3.292 0.107

(9)22 Ps*0.0002-T*0.00179-Ps*0.1719T*0.67872.758R ++=

(10)
33

22

Ps*0.00000062T*0.000017
Ps*0.00086-T*0.00019-Ps*0.365T*1.397-26.704R

++

++=

(11)
410-47-36-3

22

Ps*10*8.8-T*10*1.3-Ps*10*1.76T*0.00009
Ps*0.00131-T*0.021-Ps*0.407T*2.152868.33R

++

++−=

Analysis of variance shows that the effect of 
particle size is statistically significant on kinetics 
constant however it is not significant on the RI at 
the same level. 

3-2. Modeling of the cumulative recovery by 
multivariable regression
Multivariate regression (MVR) is a widely used 
classical method for regression in many fields of 
chemistry and industrial process control [31]. The 
MVR problem can be stated as follows: Features 
are measured for m variables, xj (j = 1 to m), and 
for a variable, y, with the goal of establishing a 
linear (or first-order) relationship between them. 
The relationship can be mathematically 
represented as:

y= b1x1 + b2x2 + … + bjxj + … + bmxm + e (7) 
 

where, xj’s are the independent variables, y is the 
dependent variable, bj’s are sensitivities 
(regression coefficients) and e is the error or 
residual. Different techniques based on 
multivariate regression were conducted to 
describe the cumulative recovery as a function of 
particle size and time. 
 By the simple linear regression method, the 
equation correlating time and particle size with 
the cumulative recovery can be developed as 
following:

Ps*0.0250T*0.20015.3393R ++= (8) 
 

Based on the experiment data, the quadratic 
regression equation will be as Eq. 9.
In addition, cubic regression equation, Eq.10, and 
quadric regression equation, Eq.11, are given 
above.
For each model, goodness of fit may be 
demonstrated by low RMSE and/or high R2. 
Prediction accuracy is demonstrated by high good 
estimate (GE). Goodness of fit and prediction 
accuracy for various models are presented in 
Table 4.
As can be seen in Table 4, the quadric model 
showed the best performance with the lowest 

RMSE, the highest R2, and the highest number of 
GE. This indicates that the quadric model 
provided the most accurate predictions.

Table 4. Comparisons of the goodness of fit and accuracy

Model RMSEa R2b Good 
estimate(%)c

Linear 16.8 0.521 10
Quadratic 8.91 0.865 24
Cubic 4.89 0.96 36
Quadric 2.95 0.985 68

a RMSE = square-root of mean square error which is defined as the mean of the 
squared deviations between the actual values of the observations and the 
predicted values of the corresponding observations.
b R2 = 1 - residual sum of squares/corrected sum of squares.
c Good estimate = the percentage of predicted values that are within the 5%
tolerance of the corresponding actual values.

The distribution of difference between cumulative 
recovery predicted from Eq. (10) and actual 
determined amounts of cumulative recovery is 
shown in Figure 4. The difference between 
predicted value and actual data, followed a normal 
distribution therefore there is no significant 
deviation between the predicted data and the 
experiment data.

3.3. Modeling the effect of particle size on 
cumulative recovery with quadric regression 
equation
The typical response surface and contours for 
cumulative recovery of different particle size are 
shown in Figure 5. This figure shows the effect of 
particle size on cumulative recovery. The flotation 
recovery increases initially, reaches a maximum 
and decreases afterwards with increasing particle 
size. This is due to the combined effect of the 
collision, and attachment/detachment sub-
processes, dominant in small and large sizes, 
respectively.
In order to check the validity of the quartic 
regression model, the cumulative recoveries 
derived from Eq. (10) for individual size fractions 
(average particle size) are plotted against the 
corresponding cumulative recovery (Figure 6). 
The correlation coefficient (R2) values of the 
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model were 0.99, 0.996, 0.98, 0.98 and 0.97 for 
37.5, 112.5, 225, 400 µm and 625 µm average 
particle sizes respectively. It was observed that 
cumulative recoveries of different particle size 
and time using quartic regression model could be 
predicted reasonably well. 

Figure 4. Distribution of residuals between predicted 
value and actual data of cumulative recovery

4. Conclusion
1- The relationship between kinetics constant (k) 
and maximum theoretical flotation recovery (RI) 
with particle size (Ps) were estimated through the 
following Equations:

0.6827+Ps*0.0055+Ps*10*3.02-k 2-6=

149.25-ln(Ps)*92.65+(ln(Ps))*8.8904-RI 2=

Figure 5. Response surface and contours for the 
cumulative recovery

Figure 6. Comparison between actual and predicted cumulative recoveries for individual size fractions
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The distribution of residuals of models followed a 
normal distribution indicating that the 
predictability of models is good.
2- Analysis of variance shows that varying of 
particle size is statistically significant on kinetics 
constant however it has not significant effect on 
maximum theoretical flotation recovery (RI) at 
95% confidence level. 
3- Different techniques were conducted to 
describe the cumulative recovery as a function of 
particle size and time. The quadric model showed 
the best results with the lowest RMSE, the highest 
R2, and the highest number of GE. This indicates 
that the quadric model provided the most accurate 
predictions.
4- The correlation coefficient (R2) values of the 
quadric regression model were 0.99, 0.996, 0.98, 
0.98 and 0.97 for 37.5, 112.5, 225, 400 and 625
µm average particle sizes respectively. It was 
observed that cumulative recoveries of different 
particle size and time using quadric regression 
model could be predicted reasonably well.  

Notation 
Ac: percentage ash content of feed
Af: percentage ash content of concentrate
Cb(t): babble concentration, p mL−1 
Cp(t): particle concentration, p mL−1 
k: first order rate constant, min-1 
Ps: particle size, micron
R: cumulative recovery after t (%)
Re: non ash recovery (%)
RI: maximum theoretical flotation recovery (%)
T: time, s
Y: percentage yield of the concentrate
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