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Abstract

Stochastic seismic inversion is a family of inversion algorithms in which the inverse solution was carried out
using geostatistical simulation. In this work, a new 3D stochastic seismic inversion was developed in the
MATLAB programming software. The proposed inversion algorithm is an iterative procedure that uses the
principle of cross-over genetic algorithms as the global optimization technique. The model perturbation
towards the objective function is performed recurring to direct sequential simulation and co-simulation. This
new algorithm was applied to a synthetic dataset with and without noise. The results obtained for the
inverted impedance were satisfactory in both cases. In addition, a real dataset was chosen to be applied by
the algorithm. Good results were achieved regarding the real dataset. For the purpose of validation, blind
well tests were done for both the synthetic and real datasets. The results obtained showed that the algorithm
was able to produce inverted impedance that fairly matched the well logs. Furthermore, an uncertainty
analysis was performed for both the synthetic and real datasets. The results obtained indicate that the

variance of acoustic impedance is increased in areas far from the well location.

Keywords: Seismic, Acoustic Impedance, Direct Sequential Simulation, Stochastic Seismic Inversion,

Genetic Algorithm.

1. Introduction

Stochastic models are valuable tools for
hydrocarbon reservoir characterizations in both
the exploration and production stages [1]. In the
reservoir characterization, any knowledge of the
spatial distribution of reservoir internal properties
such as porosity, permeability, and lithofacies is
of great importance in order to decrease the
uncertainty associated with a given hydrocarbon
field, and for a better decision-making [1, 2]. Over
the last decade, the use of stochastic simulation
algorithms has become a common industrial
practice during the geo-modeling workflow,
mainly due to its potential in assessing the spatial
uncertainty of the property that is modeled.
Among these methodologies, the most common
approaches are the sequential indicator simulation
for the morphological characterization of

lithofluid facies [3], sequential Gaussian
simulation [4], direct sequential simulation [5],
and stochastic simulations conditioned to multi-
point statistics [6].

In the early appraisal stage of the reservoir, the
sparse core and well-log data is only available
within the field of study. Although this high-
resolution data provides detailed and reliable
information about the reservoir properties of
interest along the well path, they are limited to a
few sub-surface locations. Once the internal
reservoir properties are modeled, exclusively
based on the available well-log data, the resulting
models exhibit a great level of uncertainty,
particularly at distances far from the well
locations [2]. In order to get more reliable models
with less uncertainty far from the wells location, it
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is common to incorporate other geophysical data
such as seismic reflection within the geo-
modelling workflow. The seismic reflection data
covers a great spatial extent at a relatively low
cost but only provides an indirect measurement of
the sub-surface properties of interest comparing
with the well-log data. However, before
incorporating this data, it is first required to solve
a non-linear, ill-posed, seismic inversion problem
with a multiple-solution problem [7].

The most common seismic inversion methods are
categorized as deterministic. They have been used
for several decades since they are less
computational and easy to use. Deterministic
methods allow retrieving a single inverse model
of the elastic properties of interest that best fit the
observed recorded seismic data. The most
common methods in practical cases are the model-
based and sparse-spike ones [8, 9]. These are
easily implemented, and normally by a
linearization around the best-fit inverse solution
[10]. In spite of their widespread application, the
uncertainty assessment of deterministic solutions
is limited. Stochastic seismic inversion is a kind
of geo-statistical inversions, where the inverse
solution is achieved by sampling the model
parameter space by geo-statistical sequential
simulation combined with global optimization
algorithms. Genetic algorithms [11-16] and
simulated annealing [17, 18] are the most
common techniques used within this class of
inversion. Geo-statistical inversion uses sequential
simulation iteratively as the model parameter
perturbation technique. For each elastic model
generated during a given iteration, the synthetic
seismic data is computed and compared with the
observed seismic data on a trace-by-trace basis.
The misfit between the real and synthetic data is
then used to guide the iterative procedure towards
the solution.

The first geo-statistical seismic inversion methods
were introduced by Bortoli et al. (1992) [19] and
Haas and Dubrule (1994) [20]. In their sequential
trace-by-trace approach, each seismic trace was
visited individually following a pre-defined
random path that visits all the gridding locations.
At each step along the random path, a set of
numerous acoustic impedance (Al) traces was
simulated using Sequential Gaussian Simulation
(SGS). Then for each individual simulated
impedance trace, the corresponding reflection
coefficient was derived and convolved by a
wavelet. It resulted in a set of numerous synthetic
seismic traces, which was individually compared,
in terms of the correlation coefficient, against the
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recorded seismic trace. The acoustic impedance
model that produced the highest correlation
coefficient between the real and synthetic seismic
traces was stored in the reservoir grid and
considered as the conditioning data for simulation
of a new set of acoustic impedance models at the
new location considered in the pre-defined
random path [19, 20]. Note that for the first
location along the random path, the acoustic
impedance models were simulated exclusively
conditioned to the available acoustic impedance
log data. The following locations were
conditioned not only to the available experimental
data but also by the acoustic impedance traces
already simulated in the previous steps. The
inversion process was finished after all the trace
locations were visited. Since the random path
changed on each individual geo-statistical
inversion run, and consequently, modified the
conditioning data at each trace location, different
runs produced variable inverted acoustic
impedance models that fitted equally the observed
seismic reflection data. All the possible solutions
were achieved under the same assumptions
regarding the global probability distribution
function and spatial continuity model as retrieved
from the experimental data, i.e. the available well-
log dataset.

Afterwards, Soares et al. (2007) [5] introduced the
global stochastic inversion methodology. Contrary
to the trace-by-trace approaches [19, 20], they
proposed a global approach during the stochastic
simulation stage. This family of algorithms was
iterative procedures that used the principle of
cross-over genetic algorithms as the global
optimization technique and where the model
perturbation towards the objective function was
performed recurring to direct sequential
simulation and co-simulation [14, 21, 22]. The
procedure generated, at once and for the entire
seismic grid, a set of impedance models. Each
impedance model was then convolved to create a
set of synthetic seismic volumes, which were
compared with the recorded seismic cube.
Although this method is computationally
expensive, it allows a more comprehensive
exploration of model space since more simulation
models have been performed for the inversion. In
the conventional algorithm [14], the correlation
coefficient between the synthetic and real
recorded seismic traces was done for the entire
vertical samples of each trace. This is the easiest
way, and probably less computational. However,
it is possible to make a random layering map in
which a partial vertical set of samples is selected
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to be compared regarding the synthetic and
recorded seismic data. In this work, a new
implementation of the stochastic seismic inversion
was developed in the MATLAB programming
software. In this new algorithm, a comparison is
made between the synthetic and real seismic
traces using a layering map, where the random
parts of a trace are selected to calculate the
correlation coefficient. In addition, an earlier work
[14] introduced the inversion method very briefly
and did not present comprehensive results and
blind well tests. In the current work, however, the
new code was applied and investigated deeply on
both the synthetic and real datasets. Since this
algorithm is the only one that performs the
inversion in a global condition, blind-well tests
were used to validate the method for both the
synthetic and real datasets.

2. Direct sequential simulation and co-
simulation
The Direct Sequential Simulation (DSS)

algorithm was initially proposed by Soares (2001)
[5]. This algorithm uses a global probability
distribution and a spatial continuity pattern when
simulating a studied area. In comparing with other
sequential simulation algorithms, DSS has the
advantage of using the original data domain
without the need for any parametric transform,
e.g. Gaussian transform. DSS generates a
simulated value using the simple kriging estimate
and variance, calculated within a searching
neighbor based on a variogram model. Sampling
is done directly using the global conditional
distribution  function  estimated from the
experimental data [5]. The simulated value at
location x,, is drawn from an auxiliary probability
distribution function (E;(z)), which is built from
the global cumulative distribution function (CDF)
E,(z). F,(z) is defined by selecting an interval
over F,(z) centered on the simple kriging estimate
(z(xy,)") (Equation 1), the value with an interval
range proportional to the kriging variance, o2
(Equation 2).
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One way of constructing F, (z) is by defining a
local Gaussian CDF, G(y(x,)*, 02 (x,)), created
by the Gaussian transform of the interval of F,(z)
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centered in z(x,)* (Equation 1) with an amplitude
proportional to o2, (Equation 2).
The DSS simulation algorithm can be summarized
in the following sequence of steps [5]:
1) Generate a random seed to define a random
path over the entire simulation grid x,,u=
1, ..., N, where N is the total number of nodes that
compose the simulation grid;
2) Estimate the local mean, z(x,)*, and variance,
o2 (x,), with simple kriging estimate conditioned
to the original experimental data and previously
simulated data, within a neighborhood around u;
3) Define the interval F,(z) to be sampled, as
previously explained,;
4) Draw the z3(x,,) value from CDF of F,(z);
e  Generate the u value from the uniform
distribution between [0, 1]

e Generate the y° value from
G(Y(xu)*' O-gk(xu))

e Return the simulated value z5(x,) =
® ' (y®)

5) Loop until all the N nodes of the simulated grid
have been simulated.

3. A new stochastic seismic inversion in a
genetic algorithm framework

Stochastic seismic inversion is a type of geo-
statistical inversion methods, in which spatial
continuity is taken into account for deriving
acoustic impedance models from seismic data.
Soares et al. (2007) [14] proposed a stochastic
inversion algorithm, and briefly presented a case
study. In their algorithm, the comparison between
the total real and synthetic traces was used as the
objective function of a genetic algorithm. Using
an entire trace for calculating the correlation
coefficient inside the inversion procedure made it
difficult for the iterative process to be converged
since the simulated values of impedance may vary
a lot due to the geo-statistical simulation nature.
In our new algorithm, a modification is proposed
inside the inversion procedure that compares a
partial trace selection to calculate the correlation
coefficient between the real and synthetic seismic
data. The partial selection of a trace is defined by
a “layering” map in which the number of vertical
grid number of each part of the trace is generated
randomly. At the beginning of each iteration, a
new layering map is generated randomly to avoid
any discontinuity artifact. The flowchart of the
proposed inversion method is briefly described by
Figure 1. First a user-defined number (e.g. N) of
acoustic impedance cubes is generated using the
direct sequential simulation algorithm.
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Convolving a seismic wavelet, we are able to
create N cubes of synthetic seismic. In this step,
instead of calculating the correlation coefficients
between each trace of the cube, a random division
of all cubes is done first. Notice that the division
is random but the same for all cubes in each
iteration in order to make it possible to calculate
the correlation coefficients in a regular grid. Now
each part of each trace in N cubes is extracted and
compared with the corresponding part from the
real seismic, leading to a correlation coefficient
value. Then all N cubes are merged into a single
cube by selecting the best parts of acoustic
impedance values. “Best part” means that acoustic
impedance values correspond to the higher
correlation coefficient values of all N cubes. In
this step, a cube of the highest correlation
coefficient values related to each part is also
created. The first iteration is finished here, and the
algorithm is ready to do the next iteration, which
is quite different. The second iteration is begun by
simulating N new cubes of acoustic impedance
using direct sequential co-simulation. The well
logs, “best parts” cube of acoustic impedance, and
cube of highest correlation coefficients from the
previous iteration are used to do the co-simulation

of N acoustic impedance cubes. Then the
corresponding synthetic seismic cubes are
generated, and a set of new correlation

coefficients is calculated using a new layering
map. A new “best parts” cube of acoustic
impedance and a new cube of highest correlation
coefficients are created. The algorithm proceeds
until the total number, if iteration is achieved. In
the last iteration, there are N numbers of acoustic
impedance cubes in which the highest correlation
coefficient values are obtained. The entire
procedure does the optimization based on a
genetic algorithm. Genetic algorithm is the name
given to a process which relies on producing
different generations, each created using the
previous one, and evaluated through an objective
function. The proposed algorithm is called genetic
because there are "generations” (iterations) with
several “individuals" (simulations). For each
generation, the best parts of the individuals are
used to reproduce the next generation, and the
worse parts are just ignored. The objective
function is the mismatch between the synthetic
and real seismic data using the Pearson correlation
coefficient formula.

4. Application of new inversion algorithm to a
synthetic dataset
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The synthetic dataset used for this research work
consisted of the 3D seismic data and acoustic
impedance logs of 14 wells. The inversion
gridding dimension was 101x101x90. Figure 2a
shows a 3D view of the well locations in the
gridding cube. Two wells were excluded from the
inversion process to be used for blind-well tests
(Figure 2b). The seismic wavelet used to create
the seismic data is shown in Figure 3. The first
step of the geo-statistical inversion was variogram
modeling. Both the horizontal and vertical
variogram models were calculated using the
impedance logs of the wells (Figure 4). The
algorithm was then applied using the variogram
models. There were 64 realizations per iteration to
explore the model space. After 6 iterations, a
satisfactory convergence was achieved. Figure 5a
presents a vertical section of the input seismic
data crossing one of the wells. Figure 5b shows
the best inverted impedance model of the
algorithm. Figure 5c illustrates the corresponding
synthetic seismic section that has been resulted by
convolution of seismic wavelet (Figure 3) with the
calculated reflection coefficient (RC) series. As it
can be seen in Figure 5c, all reflectors were
reproduced in the synthetic seismic section with
more additional details.

In order to evaluate the ability of the proposed
algorithm in inversion of noise-contaminated data,
a randomly noise-added seismic cube was
generated with a signal to noise ratio of 4 dB.
After adding noise, weak reflectors on top of the
section were intensively destroyed, while sharp
reflectors lost their continuity, especially in the
bottom area (Figure 6a). The inverted impedance
model is shown in Figure 6b. Figure 6¢ presents
the synthetic seismic section. In this figure, most
sharp reflectors were reproduced after inversion.
However, there are some areas in which some
reflectors were not reproduced properly, probably
due to the intense level of noise compared to the
seismic signal.

The global correlation coefficient between the real
(input) and synthetic (inverted) seismic data for
the noise-free and noisy datasets were 0.76 and
0.71, respectively. Figure 7 shows the
convergence revolution for both the noise-free and
noisy data.

Any stochastic inversion method must respect the
mean and variance of the hard data (well logs) in
the final inverted model of the property of
interest. Table 1 compares these parameters. As
expected, both the mean and variance values were
properly reproduced in the inverted acoustic
impedance model. It can be seen that the variance
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for the inverted impedance of noisy dataset is
high. This is caused by the high level of noise,
where seismic signals were damaged. In this
situation, the algorithm simulates higher range
impedance values. Consequently, the variance
becomes high. In addition, the histogram of the
impedance data for both the well logs and inverted
models are presented in Figure 8. In this figure,

" Acoustic  /
impedanc
e logs of
wells

Generating N

variograms

\ 4
Calculating N

synthetic seismic
cubes

\ 4
Defining random

trace divisions
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Building a cube of Al
by finding the
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partial CCs

\ 4

Generating N

\ 4

Calculating N
synthetic seismic
cubes

Has the total number of
iterations been reached?

the histogram reproduction can be seen in the
inverted impedance model for both the noise-free
and noisy datasets. In case of the noise-free
dataset, the impedance histogram is reproduced
perfectly, while there is a slight difference in the
impedance histogram of the noisy dataset.
Nevertheless, the main populations were
reproduced (Figure 8c).

geostatistical Seismic
simulations using wavelet

Real
seismic
cube

Cosimulated-based Se'sn'l“i
models of Al wavele

Intrpducing the last Ve
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Figure 1. Flowchart of proposed stochastic seismic inversion algorithm.
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Figure 2. a) 3D view of inversion gridding and well locations, b) 2D well locations of synthetic dataset.
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326



Sabeti et al./ Journal of Mining & Environment, Vol.8, No.3, 2017

(@) Crossline number
XL 80 90 100 110 120 130 139 149 159 169 178
1 1 1 1 1 1 1 1 1 W
Wa

. — ———— 0.15
w — — 0.1
E 2 [ - ~. ————— 0.0
- - - 0
Q
E
=

® Crossline number
XL 80 90 100 110 120 130 149 159 169 179
i 1 1 Il 1 1 1 1 1 W

Crossline number
©)

XL 80 90 100 110 120 130 139 149 159 169 179
I I I I s I 1 I h

Figure 5. a) A vertical section of input seismic data, b) inverted impedance model, and c¢) synthetic seismic
section after convolution with seismic wavelet (Figure 3).
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Figure 6. a) A vertical section of input noisy seismic data, b) inverted impedance model, and c) synthetic seismic
section after convolution with seismic wavelet (Figure 3).
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Figure 7. Convergence of algorithm for both noise-free and noisy synthetic datasets. Correlation coefficient
values are between real (input) and synthetic (inverted) seismic data.
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Figure 8. Acoustic impedance histograms for a) well logs, b) inverted model of noise-free dataset, and c) inverted
model of noisy dataset.

Tablel. Mean and variance of acoustic impedance values.
Mean (k.Pa.s/m) Variance (k.Pa.s/m)?

Acoustic impedance of well logs

Inverted acoustic impedance (noise-free)

Inverted acoustic impedance (noisy)

6750 702692
6664 717666
6612 934767

4.1. Blind-well test for synthetic dataset

Two wells were excluded from the inversion
process to do the blind-well tests (Figure 2b). The
acoustic impedance logs of these two wells were
upscaled into inversion gridding in order to be
comparable with the inverted acoustic impedance
of the same spatial locations. Table 2 presents the
correlation coefficients between the well logs and
the inverted acoustic impedance for the two blind
wells. In addition, Figure 9 shows the impedance

plots of well logs, and the inverted impedance of
noise-free and noisy datasets for both blind wells.
There are good matches between the impedance
logs and the inverted impedance in case of the
noise-free dataset for both blind wells. However,
for the noise-contaminated dataset, there are some
variations in the inverted impedance values,
which are mainly due to artifacts caused by the
noisy seismic data.

Table 2. Correlation coefficients between impedance well logs and inverted models.

Noise-free dataset

Noisy dataset

Blind well 1
Blind well 2

93%
87%

83%
56%
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4.2. Uncertainty analysis for synthetic dataset

One of the main advantages of the stochastic
inversion methods versus the deterministic ones is
the possibility of producing various outputs
named as realizations. All these realizations are
conditioned to the well logs and seismic data. This
makes it possible to generate a variance cube
using all impedance models of the last iteration.
Figure 10a shows the vertical section of the
variance model related to the noise-free synthetic
dataset. As expected, the areas close to the well
have a lower variance, meaning less uncertainty.
Variance normally increases where we are
distancing from the well. This is not a general rule
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since there may be other reasons for increasing
the variance far from a well. Increasing the
variance might be caused by weak seismic signals
or low correlation between the well logs and
seismic data. The latter reason sometimes spreads
over the inversion gridding since the simulated
values come from neighboring values using a
variogram model. Figure 10b represents the same
vertical section related to the noisy dataset. As
expected, the variance values were raised due to
the significant level of noise added to the seismic
data.
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Figure 9. Blind-well tests for synthetic dataset. Plots of acoustic impedance values for a) blind well 1 and b) blind
well 2.
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Figure 10. Vertical sections of variance model related to a) noise-free dataset and b) noisy dataset.

5. Application of proposed inversion algorithm
to a real dataset

A real dataset from North Sea was chosen to
further examine the ability of the inversion
algorithm. The location of the studied area is

North Sea

J ¢
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shown in Figure 11. This dataset consists of the
3D seismic and acoustic impedance data of two
wells. Figure 12 shows a 3D view of inversion
gridding including wells locations.

Gerro'nany Ié]

100 mi

Figure 11. Map of real case study in North Sea.
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Figure 12. 3D view of inversion gridding and well locations of real dataset.

5.1. Wavelet extraction

Accurate wavelet estimation is absolutely critical of the seismic data, which may vary with
to the success of any seismic inversion. The shape frequency, is obtained by this filter. The algorithm
of the extracted wavelet (frequency and phase minimizes the misfit between the seismic data and
content) may strongly influence the inversion the convolution between the estimated wavelet
results, and thus the subsequent assessment of the and the reflection coefficients. The algorithm
reservoir quality. In the inversion techniques, it is iteratively adjusts the amplitude and phase
assumed that the seismic data can be modeled as a spectrum of the wavelet. In this approach, a
convolution of the seismic wavelet with a band- wavelet was extracted in a way that it optimally
limited reflection coefficient series. Wavelet matched both wells simultaneously. Figure 13
estimation is conducted by computing a filter that shows the extracted wavelet and its frequency
best shapes the well-log reflection coefficients to spectrum.

the input seismic at the well locations. The phase

a) b)
1.00
o] 0.75
s :
g ] = 050
Easo £
0.25
P % % 0 25 50 75 100 125
Time (ms) Frequency (Hz)

Figure 13. a) Seismic wavelet extracted for real dataset in time domain, b) frequency spectrum of wavelet.

5.2. Inversion

As shown in Figure 12, the acoustic impedance inverted impedance, and synthetic seismic data.
log of one well was used for inversion, and the The inverted impedance (Figure 15b) clearly
other well was used for evaluation and validation follows the seismic reflectors in Figure 15a. After
of the inversion results. Vertical variogram convolution with the seismic wavelet (Figure 13),
modeling was completed by acoustic impedance a synthetic seismic section was generated in
well log. Horizontal variogram modeling was Figure 15c. This synthetic seismic section has
done using the seismic data. Figure 14 shows the more detailed reflectors compared to the real one.
results of variogram modeling. These variogram The histograms of well log and inverted acoustic
models were used as input for the stochastic impedance are shown in Figure 16, proving that
inversion algorithm. The proposed stochastic the histogram reproduction was successful during
inversion was done using 6 iterations and 64 the proposed stochastic seismic inversion. Table 3
simulations per iteration. The global correlation shows the mean and variance of well-log
coefficient between the synthetic and recorded impedance and the final inverted model. Both
seismic data was 0.61. Figure 15 illustrates three these parameters were successfully reproduced by
sections, crossing the well, of real seismic data, the 3D inversion of the seismic data.
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Table 3. Mean and variance of acoustic impedance values.

Mean (k.Pa.s/m) Variance (k.Pa.s/m)?

Well log acoustic impedance 4988 1.081x10°
Inverted acoustic impedance 4908 1.049x10°
(@)
¥ (h) Var 1 ¥ (k)
14506527 f------- qmmmmnoes i [ i H 461553 53
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Figure 14. Variogram models of real dataset: a) vertical variogram using impedance well log, b) horizontal

variogram using seismic data.
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Figure 15. a) A vertical section of real seismic data, b) Inverted impedance model, ¢) synthetic seismic section

after convolution with seismic wavelet (Figure 13).
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Figure 16. Acoustic impedance histograms for a) well log and b) inverted model of real dataset.

5.3. Blind well test for real dataset

One excluded well log (Figure 12) was upscaled
and compared to the inverted acoustic impedance
in the same location. The correlation coefficient
of 0.65 between the blind-well log and the
inverted acoustic impedance was achieved. Figure
17 shows two plots regarding the well-log

acoustic impedance and the inverted one.
Although there are some differences between the
well log and the inverted values, the general trend
of the well log is followed by the inverted values.
Since the inversion was done using only one well,
this correlation might be acceptable.
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Figure 17. Blind-well test for real dataset. Impedance values of well log and inverted impedance are plotted.
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5.4. Uncertainty analysis for real dataset

Using 64 simulation realizations of the last
iteration, the variance was calculated over the
whole 3D inversion gridding. Figure 18 shows a
vertical section of the variance model crossing the
well. Since the inversion was done in three
dimensions, a horizontal slice of the variance is
shown in Figure 19. The variance values increase
the area far from the well. This is an important

factor that proves the reliability of the algorithm
since the simulation procedure must always honor
the well-log values during the inversion. In the
area far from the well, the simulation algorithm
tries to generate the impedance values using a
variogram model. This will normally lead to an
increase in the variance.
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Figure 19. Horizontal slice of variance model related to real dataset. Locations of wells are presented by filled

6. Conclusions

In this work, a new 3D stochastic seismic
inversion was proposed using direct sequential
simulation and co-simulation, and applied to both
the synthetic and real datasets. The new algorithm
follows a genetic framework since it has several
generations (iterations) with several individuals
(simulations). Application to a synthetic dataset,
with and without noise, showed that the proposed
algorithm is able to properly invert the seismic
data into acoustic impedance models. The
comparisons of acoustic impedance logs of two

circles.
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blind wells with those of the inverted impedance
indicate a good correlation value. This correlation,
of course, decreased in the case of using noisy
data. It was also shown that histograms, mean,
and variance of the well logs were reproduced in
the final inverted impedance model for all cases.
Moreover, application of the proposed inversion
procedure to a real dataset revealed that the
algorithm was successful in producing the
inverted impedance models. Blind-well test for a
real dataset showed an acceptable correlation
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between the well log and the inverted impedance
values.

The proposed algorithm has the ability of
producing several inverted models, all of which
honor the input data. This advantage made it
possible to do a kind of uncertainty analysis by
calculation of the acoustic impedance variance
over all the inverted models. The results of
uncertainty analysis for both the synthetic and real
datasets showed that the variance values of
acoustic impedance generally increased where
getting further from a well. This phenomenon
proved that the algorithm honored the well logs
during the inversion process.
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