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Abstract

A new method is developed for a fast identification of the stability situation of industrial processes. The
proposed method includes two factor ratios of the control constants for the upper and lower control limits to
process these constants. An indication ratio is then defined as the ratio of the maximum data range value to
the difference between the maximum and average values for individual data points. It is shown that if the
indication ratio comes into values between the corresponding control factor ratios, the process will be under
control, and otherwise, if the indication ratio decreases to smaller than the lower control factor ratio or gets
more than the upper control factor ratio, the process will be expected to be out-of-control. Validation of the
method was successfully resulted using two series of quality control datasets obtained from Zarand Iron Ore
Complex (Zarand, Iran) and Miduk Copper Complex (Shahr Babak, Iran). The results obtained show that the
process responses predicted by the proposed method are in agreement with those indicated by the
conventional chart-based method. The developed method eliminates the need for drawing the process control
charts used to assess the process control level. The superiority of the proposed method over the chart-based
method becomes apparent especially when a large number of control charts are necessary to be drawn and
interpreted for engineering decision-making purposes.
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1. Introduction

Process safety and product quality are two
important issues for modern industrial processes.
As one of the key technologies in the process
system engineering and control area, the process
monitoring methods can be used to improve
product quality and enhance process safety. If a
process fault can be anticipated at an early stage
and corrected in time, product loss can be greatly
reduced. Timely identification of faults can also
be used to initiate the removal of out-of-spec
products, thereby, preserving high standards of
product quality. In addition, the decisions and
expert advice obtained from process-monitoring
procedures can be used for process improvement
[1].

Statistical process control (SPC)is one of the
most effective continuous quality improvement
strategies and quality control methods, by exerting

statistical methods for monitoring process
performance and product quality. The application
of SPC involves three main phases of activity: 1)
understanding the process and the specification
limits, 2) eliminating the assignable (special)
sources of variation so that the process is stable,
and 3) monitoring the on-going production
process assisted by the use of control charts to
detect significant changes of mean or variation [2,
3]

In the SPC analysis, quality data in the form of
product or process measurements are obtained in
real-time during process monitoring. This data is
then plotted on a graph, called control chart, with
pre-determined control limits by the capability of
the process, whereas process specifications are
determined by the client's needs. Therefore,
control charts operate on the specifications of



Khoshdast & Mahmoodabadi/ Journal of Mining & Environment, Vol.8, No.2, 2017

control limits normally given by the data of the
process.

An industrial process can be in the in-control or
out-of-control state. When a process is stable and
under control, it displays a common cause
variation, a variation that is inherent to the
process. A process is in-control when, based on
the past experience, it can be predicted how the
process will vary (within the limits) in the future.
If the process is unstable, it displays a special
cause variation, a non-random variation in
external factors. The main objective of a quality
control chart is to detect quickly the occurrence of
the factors that lead to the out-of-control process
and correct the process. In addition, control charts
attempt to distinguish between two types of
process variation: 1) common-cause variation that
is intrinsic to the process and is always present,
and 2) special-cause variation, which stems from
external sources and indicates that the process is
out of statistical control [4, 5].

In a traditional design of control charts, a sample
of certain size is collected at equal and constant
sampling or time intervals. Then quality-related
statistics are plotted on the control chart. As soon
as a point falls above the upper control limit
(UCL) or below the lower control limit (LCL), the
process is assumed to be out-of-control,
otherwise, it is considered as an in-control process
[5].

A multiplicity of methods has been proposed for
designing control charts including Shewhart,
statistical criteria, economic criteria or joint
economic and statistical criteria. Each method has
some advantages and disadvantages such as
complexity in  implementation,  statistical
configurations, and cost-effectiveness. The type of
control chart that an engineer uses depends on the
type of data. It is shown, for example, that the
Shewhart charts are quite good at detecting large
changes in the process mean or variance. Other
types of control charts have been developed such
as the EWMA chart, CUSUM chart, and real-time
contrasts chart, which detect smaller changes
more efficiently by making use of information
from the observations collected prior to the most
recent data point [3, 6].

Regardless of the type of control charts and their
advantages, the existing control chart design
models suffer from the lack of flexibility and
adaptability in real-world problem-solving when a
large number of data should be analyzed. This is
an impractical and mostly irrecoverable time-
consuming approach, requiring a large number of
control charts being interpreted to identify the
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control situation of a real process. In the recent
years, many new SPC methodologies have been
developed for improving the traditional SPC
methods and for handling new SPC applications,
which focus on development of the time- and
cost-efficient design of control charts. In the
efficient design of a control chart, different
components associated with the process are
considered, and an optimal control chart
minimizes the long-run expected average cost per
unit time. Several economic designs have recently
been published, considering two main components
of sampling interval and time by exerting
mathematical or statistical methods (e.g. [3, 5, 7-
21)).

However, the main problem, i.e. the need for
plotting the process control charts to be
interpreted, has not been resolved. The main
objective of this study was to introduce a new
method to identify the control situation of
industrial processes with no need to draw process
control charts. The method was also verified using
two series of practical data obtained from
different mineral processing plants through a
comparative study against conventional process
control approaches.

2. Description of New Method

The most conventional statistical process control
tools are the Shewhart control charts, which
monitor operational processes using continuous
data and utilizing the Gaussian distribution
assumption to design the upper and lower control
limits. The interval of process response variations
between these limits indicates the normal
operating and in-control region for the process. If
the process response shifts to outside these limits,
the process is taken as an abnormal out-of-control
state, and a process fault or disturbance occurs.
The Shewhart control charts can be divided into
two groups, as shown in Figure 1:

e Variable charts: These control charts
apply variable sampling intervals, where the
lengths of the sampling intervals are varied
according to the process quality. A long
sampling interval is considered when the
process quality indicates a possible in-control
situation, while a short sampling interval is
considered, otherwise. The variable charts are
used for identification of the control level of
continuous processes [22-25].

e Attribute charts: These charts are
constructed on the basis of the data that can be
grouped and counted as present or not.
Attribute charts are also called count charts,
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and attribute data is also known as discrete
data. These types of control charts are

samples taken from a process not for
identification of control situation of the process

complicated when interpreting, and are thus [22].
used for detecting possible defectives in the
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Figure 1. Types of variable and attribute Shewhart control charts [1, 2].

The Shewhart variable charts are easy to
understand, and are, therefore, widely used in
industrial applications. Three types of variable
charts are available, which are known as the
individuals and moving range (I-MR), Xbar and
range (Xbar-R), and Xbar and standard deviation
(Xbar-s) charts. The I-MR chart is one of the most
commonly used control charts for continuous
data; it is applicable when one data point is
collected at each point in time. The Xbar-R chart
is used when measurements can rationally be
collected in sub-groups of 2 to 10 observations.
Each sub-group is a snapshot of the process at a
given point in time. The Xbar-s chart is used when
the distribution for the process characteristic is
stable and the sampling volume is high.

The variable control charts are actually two charts
used in tandem. Together, they monitor the
process average as well as the process variation.

The data chart either individuals (Xbar) chart is
used to detect trends and shifts in the data and
thus in the process. The data chart must have the
data time-ordered, i.e. the data must be entered in
the sequence in which it was generated. Process
chart shows short-term variability in a process —
an assessment of the stability and control situation
of process variation [26, 27].

Each control chart has three main elements of a
time series graph, a central line (CL), as a visual
reference for detecting shifts or trend, and two
control limits, so called upper and lower ones
(UCL and LCL), which are computed from
available data and placed equidistant from the
central line. These elements can be determined
using a formula developed on the basis of
statistical calculations. Table 1 lists the equations
used for determination of the central line and
control limits of the Shewhart variable charts.

Table 1. Formula for calculation of central line and control limits of Shewhart variable charts [2].

Control Limits

Chart Type Sub-Chart Center Line (CL) Upper (UCL) Lower (LCL)
Individuals CL, =X UcCL, =X +E,R  LCL, =X -E,R
I-MR _ _ —
Moving range CL; =R UCL; =D,R LCL, =D,R
X bar CLy =X  UCLy =X +A,R LCL; =X AR
Xbar-R _ — —
Range CL; =R UCL, =D,R LCL,; =D,R
bars X bar CLy =X UCLy =X +AR  LCLy =X AR
Standard deviation CL, =§ UCL, =B,S LCL, =B.S

205



Khoshdast & Mahmoodabadi/ Journal of Mining & Environment, Vol.8, No.2, 2017

The key point for the use of control charts is that
the process charts should be checked before the
data chart is interpreted. If the process is under
control, then the data chart can be checked for any
possible defects; otherwise, if the process is out-
of-control, the special causes must be eliminated,
and the process should be returned to the
threshold and/or favourable state. Once the effect
of any out-of-control points is removed from the
process chart, the data chart would be checked. As
already mentioned, the interpretation of control
charts becomes more complicated when a large
number of data should be controlled as situations
that are very common in many industries.
Preparation of annual balance reports by quality
control office in mineral processing plants is a
good example; in such reports, a huge number of
data with different sources such as grade and
recovery of product streams, separation efficiency
values, and moisture content should be included
and interpreted. Therefore, numerous process
charts should first be drawn and checked for any
possible instability, and then the data charts
assessed for case defects in sampling point and/or
time. The following discussion deals with a series
of mathematical calculations to develop a new
method for fast identification of control situation
of industrial processes with no need for drawing
process control charts.

When using the I-MR chart, for example, the data
and process take an in-control situation only if
each single data point and multiple range point
fall inside the upper and lower control limits, that

X —E,R<X,<X +E,R (1)
and
D,R <R, <D,R )

For a set of data, the I-MR chart can be sorted by
magnitude, such that:

Xin <X <X

Rmin < Ri < Rma><

Thus it can be stated that:

X —E,R(X (X +E,R
D.R(R_, (D,R

From the upper Ii limit of Eq. (3)

(X +E, R—>X X(E R
Thus.

©)
(4)

()
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The following relation is derived from the lower
limit of Eq. (4):

— = R
D,R(R,x =& R(—T— (6)
3
Combmatlon of Eqs (5) and (6) glves
X X —X R ax
max <R< max _) <
E2 D3 E2 DS
As a result'
3
£, XX (7)

Usmg a S|m|Iar approach for the upper limit of Eq.
(3) and lower limit of Eq. (4), the following
calculations can be done for the reverse limits of
Eqs (3) and (4):

X — ER(X

—R< max X

8

E, (8)

It should be noted that the range values can get

negative or positive signs but an absolute value is

used in calculations [1, 2]. Therefore, Eg. (8) can
be restated as follows:

- —E,R(X .

S5, X max _X_
‘—R ‘ = R<E—2 9)
and:
RmaX(D4R
R _
max R
—D4 ( (10)

A combined equation is obtained from Egs. (9)
and (10) as follows:

R —X _-X R.. X _-X
max <R< max _) max< max
D, E, D, E,
Thus:
R, <_
X -x E, (11)

Comparlson of Egs. (7) and (11) leads to the
foIIowing final relation:

3( <—

Eq. (12) can be accepted as a fast indicator for the
control situation of a continuous process. It shows
that if the ratio of the maximum value for the
range to the upper domain of individual data gets
values between their corresponding control factor
ratios, the process is in-control, and otherwise, if
the indication ratio becomes smaller than the
lower control factor ratio or more than the upper

(12)
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control factor ratio, the process would be expected
to be out-of-control.

Constants E,, D;, and D, are available via
standard tables. These values depend upon the

sub-group size selected during sampling and
monitoring program. The control factors for
different Shewhart control charts are listed in
Table 2.

Table 2. Factors used for calculation of upper and lower limits of control charts [1, 2].

Sub-group size E, D3 D, A, Az B; B,
1 2.660 0 3.267 1.880 2.659 0 3.267
2 2.660 0 3.267 1.880 2.659 0 3.267
3 1.772 0 2574 1.023 1.954 0 2.568
4 1.457 0 2,282 0.729 1.628 0 2.266
5 1.290 0 2.114 0.557 1.427 0 2.089
6 1.184 0 2.004 0.483 1.287 0.030 1.970
7 1109 0.076 1.924 0419 1182 0.118 1.882
8 1.054 0.136 1.864 0.373 1.099 0.185 1.815
9 1.010 0.184 1816 0.337 1.032 0.239 1.761
10 0.975 0.223 1.777 0.308 0.975 0.284 1.716
15 - 0.347 1.653 0.223 0.789 0.428 1.572
25 - 0.459 1541 0.153 0.606 0.565 1.435
A similar approach, as employed to the I-MR ., — X —X=
control chart, can be considered for the Xbar-R ‘—R‘ ~R(Emx "2 (18)
and Xbar-s charts. Calculations for the Xbar-R A,
chart include: and:
X —AR(X (X +AR (13) R,..(D,R
D,R(R,. (D,R (14) R R 19)
From the upper limit of Eq. (13): D,
X (X +AR > X, —X (AR Thus: _ _
Thus: _ Rmax <§<X -X N R[r)nax <Xma;—X
X max —X <§ (15) 2 4 2
A, R <_
From the lower limit of Eq. (14): X _x_ A, (20)
D3§<Rmax N ﬁ(Rﬂ (16) Referrlng to Egs. (17) and (20), the identification

3
and the final combined equation is obtained as
follows:

X — R X -X R
max <R< max % max < max
A, D, A, D,
D3 Rmax
~ = 17
A X, —X a7

The following calculations can be done for the
lower limit of Eq. (13) and the upper limit of Eq.
(14):

X —AR(X

— —AR(X . —X
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relation is obtained as follows:

D <

A, X,
and the fmal fast response equation for the Xbar-s
control chart is obtained using a similar
calculation approach, used for the I-MR and Xbar-
R chartS'

3(
3X

The calculated factor ratios for the Shewhart
control charts are given in Table 3.

_(—

L —X A, (21)

_<—

X, (22)
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Table 3. Factor ratios proposed for fast identification of control level of industrial processes.

Chart type I-MR Xbar-R Xbar-s
Process stability condition E_2<X :me— ([E)—: [A)—:(X:%)T 2—: i—j(ﬁ(i—:
Sub-group size Lower limit Upper limit Lower limit Upper limit Lower limit  Upper limit

1 0 1.2282 0 1.7378 0 1.2287
2 0 1.2282 0 1.7378 0 1.2287
3 0 1.4526 0 2.5161 0 1.3142
4 0 1.5662 0 3.1303 0 1.3919
5 0 1.6388 0 3.7953 0 1.4639
6 0 1.6926 0 4.1491 0.0233 1.5307
7 0.0685 1.7349 0.1814 4.5919 0.0998 1.5922
8 0.1290 1.7685 0.3646 4.9973 0.1683 1.6515
9 0.1822 1.7980 0.5460 5.3887 0.2316 1.7064
10 0.2287 1.8226 0.7240 5.7695 0.2913 1.76

15 - - 1.5560 7.4126 0.5425 1.9924
25 - - 3 10.0719 0.9323 2.3680

3. Verification of Proposed Method

In order to verify the applicability of the proposed
method in industrial environments, two series of
real data sets were obtained from different mineral
processing plants. The control response of each
process was first predicted using the developed
model (based on the I-MR approach), and the
results obtained were compared with those
indicated by drawing the process control charts.

3.1. Case study 1: Ball charge at Zarand Iron
Ore Complex

The first verification case study was the unit ball
charge in grinding circuit at Zarand Iron Ore
Complex. The grinding circuit includes two
similar ball mills in series that prepare feed to
magnetic separators. The details of ball charge
data sheet during 2015 are presented in Table 4.
The total ball charge per each ton of feed has been
accepted and interpreted as process response by
the processing division engineers. Since only one
value was reported in each month, the I-MR
control chart was applied. In addition, the sub-
group size was equal to unity. Thus the lower and
upper factor ratios from Table 3 are 0 and 1.2282,
respectively. If the I-MR indication ratio was
between 0 and 1.2282, the process would be under
control, and the ball charge program is acceptable;
otherwise, the process would be out-of-control,
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and the reasons should be identified. The average
values for the individual data points (X ) and

their range (R ) were 1110.5845 and 883.3655,
respectively (Table 5). Xmax and Ry Were
3210.45 and 2936.62 gft, respectively. From Table
2, the values for the control factors are E, = 2.66,
D; =0, and D, = 3.267. Thus:

0% - R 2936.62

max

X 3210.45-1110.58

Therefore, the process is expected to be out-of-
control. For verification of the prediction, the
process chart was drawn using the range values
given in Table 5. From Table 1, the graphical
control lines can be determined as follow:

CL, =R =883.3655
UCL, =D,R =3.267x883.3655 = 2885.9550

LCL;, =D,R =0

The process chart for the ball charge data is
shown in Figure 2. As seen, an instability trend is
observed in September, indicating that the process
is out-of-control, which is in agreement with the
predicted result.

=1.3985 ' 1.2282
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Table 4. Ball charge data sheet at Zarand Iron Ore Complex during 2015.

mine  wminz - Bal Ball -~ Total Total  UnitBall UnitBall  |°%@!
Charge  Charge Ball Unit Ball
Month  power power ; ; Throughput Chargel Charge 2
(MW) (MW) Mill 1 Mill 2 Charge M (g/) (/) Charge
®) ®) ® (9/t)
Jan. 3.9 3.8 100.62 87.36 187.98 113636 885.46 768.77 1654.23
Feb. 3.8 3.76 34.12 91 125.12 106478 320.49 854.64 1175.12
Mar. 3.6 3.7 32.37 57.33 89.70 54333 595.77 1055.16 1650.93
Apr. 3.98 4.03 47.25 32.04 79.29 123206 383.50 260.05 643.56
May 3.85 4 60.37 84.63 145 161401 374.04 524.35 898.38
Jun. 3.6 35 28.87 27.3 56.17 88029 328.02 310.12 638.14
Jul. 3.56 3.42 64.75 84.63 149.38 234441 276.19 360.99 637.17
Aug. 3.24 3 39.37 0 39.37 96043 409.97 0 409.97
Sep. 3.03 3.09 59.03 88.23 147.26 45869 1286.93 1923.52 3210.45
Oct. 35 35 34.61 32.22 66.83 244056 141.81 132.02 273.83
Nov. 3.8 3.8 32.22 78.98 111.20 90567 355.76 872.06 1227.82
Dec. 3.9 3.6 65.78 42.11 107.89 118900 553.24 354.16 907.40
Table 5. Range values calculated from individual data for unit ball charges.

Response Month Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Ave.
Total Unit Indivi 1654 1175 1650 643. 898 638 637 409 3210 273. 1227 907 1110
Ball Charge duals 23 A3 .93 56 38 14 18 97 45 83 82 40 58

(/) g Range 479. 475. 1007 254 260 0.9 227 2800 2936 953. 320 883.
g 10 80 37 83 24 7 20 47 62 99 42 37
3500
3000 H
% 2500 H
.‘:EUZOOO q
E 1500
5
= 1000 -
8
500 A
0

Figure 2. Process chart for total unit ball charge at Zarand Iron Ore Complex.

3.2. Case study 2: Metallurgical performance
at Miduk Copper Complex

Table 6 shows the metallurgical balance data
sheet for Miduk Copper Complex in August 2015.
As seen, the data sheet reports six quality factors
including daily tonnages and grades of feed and
product streams, grade of tailings, and final
concentrate recovery. Each dataset is an average
value of three measurements during three working
shifts per day. In order to evaluate the validation
of the proposed method, the identification ratio
was first used to assess the control level of each
factor. Since each dataset was an average of three
measurements, the sub-group size was three.
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Therefore, the factor ratios were 0 and 1.4526 for
the lower and upper limits, respectively. The
single, average, and maximum values for
individuals and range were calculated for the
metallurgical factors and shown in Table 6. Using
the I-MR identification equation (Table 3), the
control level of each factor can be predicted as
follows:

e Feed tonnage is under control because

< 225368 =1.0501<1.4526
21540.93-19394.88
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e Feed grade is under control because

< & =1.1224 <1.4526
0.81-0.68
e Concentrate tonnage is under control
because
< 78.59 =0.8127 <1.4526
499.57 - 402.86
e Concentrate grade is under control
because 0 < __ 232 =1.0112<1.4526
32.64-3034
¢ Tailings grade is out-of-control because
0.06
0 ———=1.7654 < 1.4526
x 0.1-0.07 ~
e Recovery is out-of-control because
34.12
0 X ————=1.5681 £ 1.4526
113.96-92.20

Process control charts were also drawn for the
metallurgical factors using the conventional
equations given in Table 1. Figure 3 shows the
process charts plotted using the center line and
control limits calculated for all factors (Table 7).
As seen, the control charts clearly confirm the
conditions predicted by the developed method.
The superiority of the proposed method over the
conventional chart-based method is highlighted
when an engineer decides to run a comprehensive
control monitoring program for the entire 2015.
There, the engineer must first check 72 process
control charts (12 months x 6 factors) to indicate
the process level situation before evaluation of 72
data control charts. Using the developed method,
the need for plotting process control charts is
eliminated, and the engineer would need only to
check the data charts.

Table 6. Control parameters and metallurgical performance data sheet for Miduk Copper Complex.

Feed

Concentrate

Tailings

Recovery
Date Tonnage (t/d) Grade (%) Tonnage (t/d) Grade (%) Grade (%) (%)
X; Ri X; R X X; Ri X; R; X; Ri

Aug-01-15 19642.23 - 0.58 - 421.34 28.72 - 0.06 - 106.81 -

Aug-02-15 19836.25 194.02 0.68 0.108 467.85 46.509 27.10 1.618 0.04 0.013 9378 13.030
Aug-03-15 19546.18  290.07 0.70  0.019 47359 5742 27.29 0.193 0.06 0.017 9443 0.644
Aug-04-15 19834.33  288.15 0.60 0.098 43236 41.233 26.75 0.541 0.05 0.010 96.86 2.438
Aug-05-15 1959420  240.12 0.70 0.094 438.17 5.810 29.07 2.325 0.09 0.040 93.39 3.473
Aug-06-15 20266.55 672.35 0.76  0.065 470.16 31.994  30.69 1.614 0.06 0.030 9358 0.189
Aug-07-15 19388.46  878.09 0.73 0.030 40490 65.265 32.52 1.835 0.06 0 92.91 0.666
Aug-08-15 19243.77 144.69 0.73 0.005 405.94 1.047 32.26 0.263 0.05 0.013 9370 0.786
Aug-09-15 19272.71 28.94 0.64 0.082 37275 33.194 30.78 1.479 0.08 0.033 92.39 1.309
Aug-10-15 19089.43  183.27 0.68 0.036 383.81 11.066 31.52 0.739 0.05 0.032 9312 0.730
Aug-11-15 18491.38 598.05 0.62 0.056 341.11 42.702 31.30 0.216 0.05 0 92.53 0.591
Aug-12-15 19292.00 800.61 0.61 0.014 376.61 35498 29.26 2.045 0.04 0.007 9357 1.045
Aug-13-15 19388.46 96.46 0.61 0.003 370.34 6.269 29.77 0.508 0.10 0.060 93.54 0.030
Aug-14-15 18894.24  494.22 0.63 0.023 38291 12.567 28.54 1.224 0.08 0.020 91.75 1.798
Aug-15-15 18547.38  346.86 0.67 0.039 326.32 56.589 28.70 0.159 0.10 0.020 75.37 16.379
Aug-16-15 19788.25 1240.87 0.77 0.099 32597  0.350 30.69 1.991 0.07 0.025 6577 9.601
Aug-17-15 19109.43 678.82 0.63 0.139 389.37 63.398 30.87 0.173 0.05 0.025 99.88 34.118
Aug-18-15 18481.38 628.05 0.68 0.050 44234 52971 32.38 1513 0.05 0.004 11396 14.077
Aug-19-15 20185.33 1703.94 0.80 0.121 462.77 20.429 32.64 0.261 0.06 0.006 93.45 20.513
Aug-20-15 20088.98  96.35 0.81 0.007 47591 13139 3191 0.734  0.07 0.010 9355 0.103
Aug-21-15 19423.80 665.17 0.68 0.130 397.31 78.593 30.57 1.340 0.10 0.030 92.27 1.287
Aug-22-15 19807.48 383.68 0.62 0.058 342.82 54495 32.20 1639 0.06 0.037 90.08 2190
Aug-23-15 20191.16 383.68 0.74 0.124 41065 67.836 3194 0.265 0.06 0 87.40 2.674
Aug-24-15 19615.64 575.52 0.70  0.044 386.04 24.615 30.56 1382 010 0.036 86.04 1.365
Aug-25-15 18867.46  748.17 0.66 0.036 389.19 3.148 29.77 0.788 0.05 0.050 92.61 6.578
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Table 6. Continued.

Aug-26-15 19500.54  633.07 0.63 0.032 387.62 1.566 29.94 0.169 0.04 0.013 9429 1676
Aug-27-15 18233.96 1266.58 0.71  0.079 37227 15.357  30.02 0.083 0.05 0.011 86.30 7.988
Aug-28-15 16770.12 1463.84 0.71 0.002 347.09 25175 31.36 1.339 0.08 0.033 9113 4831
Aug-29-15 19023.80 2253.68 0.61 0.098 359.45 12.359  30.00 1365 007 0014 9226 1.124
Aug-30-15 20285.33 1261.52 0.74 0.128 43211 72661 31.56 1.567 0.10 0.034 9056 1.694
Aug-31-15 21540.93 1255.60 0.76 0.019 49957 67.459  29.88 1685 007 0030 91.02 0.454
Average  19394.88 683.15 0.68 0.060 402.86 32.300 30.34 1.040 007 0020 9220 5.110

Max. 21540.93 2253.68 0.81 0.140 499.57 78590 32.64 2320 010 0.060 11396 34.120

Table 7. Center line and control limits calculated for metallurgical factors of Miduk Copper Complex.
Control Limits
Upper (UCLR) Lower (LCLR)

Fac

tor

Center Line (CLg)

Feed tonnage
Feed grade
Concentrate tonnage
Concentrate grade
Tailings grade
Concentrate recovery

683.15
0.06
32.30
1.04
0.02
5.11

1758.4272
0.1575
83.1432
2.66430780
0.0562
13.1601

2

o

[eNo oo N
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Feed Tonnage (t/d)

teranes 0| mmems|CL
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Concentrate Recovery (%)

Figure 3. Process charts for metallurgical factors at Miduk Copper Complex.
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4. Conclusions

A common method to assess the stability and
control conditions of industrial processes is the
use of control charts. However, when a large
number of data is needed to be analyzed, drawing
the corresponding control charts is significantly
time-consuming. Although these charts can be
drawn using some professional softwares, special
difficulties usually arise during interpretation of
and decision-making about the correlation
between the data and the process charts. The
developed method accelerates the interpretation
process of the data charts by eliminating the need
for drawing the process charts. The proposed
method was verified through a comparative study
of the mineral processing plants in Zarand Iron
Complex and Meiduk Copper Complex.
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