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Abstract 

A new method is developed for a fast identification of the stability situation of industrial processes. The 

proposed method includes two factor ratios of the control constants for the upper and lower control limits to 

process these constants. An indication ratio is then defined as the ratio of the maximum data range value to 

the difference between the maximum and average values for individual data points. It is shown that if the 

indication ratio comes into values between the corresponding control factor ratios, the process will be under 

control, and otherwise, if the indication ratio decreases to smaller than the lower control factor ratio or gets 

more than the upper control factor ratio, the process will be expected to be out-of-control. Validation of the 

method was successfully resulted using two series of quality control datasets obtained from Zarand Iron Ore 

Complex (Zarand, Iran) and Miduk Copper Complex (Shahr Babak, Iran). The results obtained show that the 

process responses predicted by the proposed method are in agreement with those indicated by the 

conventional chart-based method. The developed method eliminates the need for drawing the process control 

charts used to assess the process control level. The superiority of the proposed method over the chart-based 

method becomes apparent especially when a large number of control charts are necessary to be drawn and 

interpreted for engineering decision-making purposes. 
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1. Introduction 

Process safety and product quality are two 

important issues for modern industrial processes. 

As one of the key technologies in the process 

system engineering and control area, the process 

monitoring methods can be used to improve 

product quality and enhance process safety. If a 

process fault can be anticipated at an early stage 

and corrected in time, product loss can be greatly 

reduced. Timely identification of faults can also 

be used to initiate the removal of out-of-spec 

products, thereby, preserving high standards of 

product quality. In addition, the decisions and 

expert advice obtained from process-monitoring 

procedures can be used for process improvement 

[1]. 

Statistical process control (SPC) is one of the 

most effective continuous quality improvement 

strategies and quality control methods, by exerting 

statistical methods for monitoring process 

performance and product quality. The application 

of SPC involves three main phases of activity: 1) 

understanding the process and the specification 

limits, 2) eliminating the assignable (special) 

sources of variation so that the process is stable, 

and 3) monitoring the on-going production 

process assisted by the use of control charts to 

detect significant changes of mean or variation [2, 

3]. 

In the SPC analysis, quality data in the form of 

product or process measurements are obtained in 

real-time during process monitoring. This data is 

then plotted on a graph, called control chart, with 

pre-determined control limits by the capability of 

the process, whereas process specifications are 

determined by the client's needs. Therefore, 

control charts operate on the specifications of 
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control limits normally given by the data of the 

process. 

An industrial process can be in the in-control or 

out-of-control state. When a process is stable and 

under control, it displays a common cause 

variation, a variation that is inherent to the 

process. A process is in-control when, based on 

the past experience, it can be predicted how the 

process will vary (within the limits) in the future. 

If the process is unstable, it displays a special 

cause variation, a non-random variation in 

external factors. The main objective of a quality 

control chart is to detect quickly the occurrence of 

the factors that lead to the out-of-control process 

and correct the process. In addition, control charts 

attempt to distinguish between two types of 

process variation: 1) common-cause variation that 

is intrinsic to the process and is always present, 

and 2) special-cause variation, which stems from 

external sources and indicates that the process is 

out of statistical control [4, 5]. 

In a traditional design of control charts, a sample 

of certain size is collected at equal and constant 

sampling or time intervals. Then quality-related 

statistics are plotted on the control chart. As soon 

as a point falls above the upper control limit 

(UCL) or below the lower control limit (LCL), the 

process is assumed to be out-of-control, 

otherwise, it is considered as an in-control process 

[5]. 

A multiplicity of methods has been proposed for 

designing control charts including Shewhart, 

statistical criteria, economic criteria or joint 

economic and statistical criteria. Each method has 

some advantages and disadvantages such as 

complexity in implementation, statistical 

configurations, and cost-effectiveness. The type of 

control chart that an engineer uses depends on the 

type of data. It is shown, for example, that the 

Shewhart charts are quite good at detecting large 

changes in the process mean or variance. Other 

types of control charts have been developed such 

as the EWMA chart, CUSUM chart, and real-time 

contrasts chart, which detect smaller changes 

more efficiently by making use of information 

from the observations collected prior to the most 

recent data point [3, 6]. 

Regardless of the type of control charts and their 

advantages, the existing control chart design 

models suffer from the lack of flexibility and 

adaptability in real-world problem-solving when a 

large number of data should be analyzed. This is 

an impractical and mostly irrecoverable time-

consuming approach, requiring a large number of 

control charts being interpreted to identify the 

control situation of a real process. In the recent 

years, many new SPC methodologies have been 

developed for improving the traditional SPC 

methods and for handling new SPC applications, 

which focus on development of the time- and 

cost-efficient design of control charts. In the 

efficient design of a control chart, different 

components associated with the process are 

considered, and an optimal control chart 

minimizes the long-run expected average cost per 

unit time. Several economic designs have recently 

been published, considering two main components 

of sampling interval and time by exerting 

mathematical or statistical methods (e.g. [3, 5, 7-

21]). 

However, the main problem, i.e. the need for 

plotting the process control charts to be 

interpreted, has not been resolved. The main 

objective of this study was to introduce a new 

method to identify the control situation of 

industrial processes with no need to draw process 

control charts. The method was also verified using 

two series of practical data obtained from 

different mineral processing plants through a 

comparative study against conventional process 

control approaches. 

2. Description of New Method 

The most conventional statistical process control 

tools are the Shewhart control charts, which 

monitor operational processes using continuous 

data and utilizing the Gaussian distribution 

assumption to design the upper and lower control 

limits. The interval of process response variations 

between these limits indicates the normal 

operating and in-control region for the process. If 

the process response shifts to outside these limits, 

the process is taken as an abnormal out-of-control 

state, and a process fault or disturbance occurs. 

The Shewhart control charts can be divided into 

two groups, as shown in Figure 1: 

 Variable charts: These control charts 

apply variable sampling intervals, where the 

lengths of the sampling intervals are varied 

according to the process quality. A long 

sampling interval is considered when the 

process quality indicates a possible in-control 

situation, while a short sampling interval is 

considered, otherwise. The variable charts are 

used for identification of the control level of 

continuous processes [22-25].  

 Attribute charts: These charts are 

constructed on the basis of the data that can be 

grouped and counted as present or not. 

Attribute charts are also called count charts, 
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and attribute data is also known as discrete 

data. These types of control charts are 

complicated when interpreting, and are thus 

used for detecting possible defectives in the 

samples taken from a process not for 

identification of control situation of the process 

[22]. 

 

 
Figure 1. Types of variable and attribute Shewhart control charts [1, 2]. 

 

The Shewhart variable charts are easy to 

understand, and are, therefore, widely used in 

industrial applications. Three types of variable 

charts are available, which are known as the 

individuals and moving range (I-MR), Xbar and 

range (Xbar-R), and Xbar and standard deviation 

(Xbar-s) charts. The I-MR chart is one of the most 

commonly used control charts for continuous 

data; it is applicable when one data point is 

collected at each point in time. The Xbar-R chart 

is used when measurements can rationally be 

collected in sub-groups of 2 to 10 observations. 

Each sub-group is a snapshot of the process at a 

given point in time. The Xbar-s chart is used when 

the distribution for the process characteristic is 

stable and the sampling volume is high. 

The variable control charts are actually two charts 

used in tandem. Together, they monitor the 

process average as well as the process variation. 

The data chart either individuals (Xbar) chart is 

used to detect trends and shifts in the data and 

thus in the process. The data chart must have the 

data time-ordered, i.e. the data must be entered in 

the sequence in which it was generated. Process 

chart shows short-term variability in a process – 

an assessment of the stability and control situation 

of process variation [26, 27]. 

Each control chart has three main elements of a 

time series graph, a central line (CL), as a visual 

reference for detecting shifts or trend, and two 

control limits, so called upper and lower ones 

(UCL and LCL), which are computed from 

available data and placed equidistant from the 

central line. These elements can be determined 

using a formula developed on the basis of 

statistical calculations. Table 1 lists the equations 

used for determination of the central line and 

control limits of the Shewhart variable charts. 

 
Table 1. Formula for calculation of central line and control limits of Shewhart variable charts [2]. 

Chart Type Sub-Chart Center Line (CL) 
Control Limits 

Upper (UCL) Lower (LCL) 

I-MR 
Individuals ICL X

 2IUCL X E R 
 2ILCL X E R 

 

Moving range RCL R
 4RUCL D R

 3RLCL D R
 

Xbar-R 
X bar 

X
CL X

 2X
UCL X A R 

 2X
LCL X A R 

 

Range RCL R
 4RUCL D R

 3RLCL D R
 

Xbar-s 
X bar 

X
CL X

 3X
UCL X A R 

 3X
LCL X A R 

 

Standard deviation sCL s
 4sUCL B s

 3sLCL B s
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The key point for the use of control charts is that 

the process charts should be checked before the 

data chart is interpreted. If the process is under 

control, then the data chart can be checked for any 

possible defects; otherwise, if the process is out-

of-control, the special causes must be eliminated, 

and the process should be returned to the 

threshold and/or favourable state. Once the effect 

of any out-of-control points is removed from the 

process chart, the data chart would be checked. As 

already mentioned, the interpretation of control 

charts becomes more complicated when a large 

number of data should be controlled as situations 

that are very common in many industries. 

Preparation of annual balance reports by quality 

control office in mineral processing plants is a 

good example; in such reports, a huge number of 

data with different sources such as grade and 

recovery of product streams, separation efficiency 

values, and moisture content should be included 

and interpreted. Therefore, numerous process 

charts should first be drawn and checked for any 

possible instability, and then the data charts 

assessed for case defects in sampling point and/or 

time. The following discussion deals with a series 

of mathematical calculations to develop a new 

method for fast identification of control situation 

of industrial processes with no need for drawing 

process control charts. 

When using the I-MR chart, for example, the data 

and process take an in-control situation only if 

each single data point and multiple range point 

fall inside the upper and lower control limits, that 

is: 

2 i 2X E R X X E R     (1) 

and 

3 i 4D R R D R   (2) 

For a set of data, the I-MR chart can be sorted by 

magnitude, such that: 

min i maxX X X   

min i maxR R R   

Thus it can be stated that: 

2 max 2EX R X X E R     (3) 

3 max 4D R R D R   (4) 

From the upper limit of Eq. (3): 

max 2 max 2X X E R X X E R       

Thus: 

max

2

X X
R

E


  (5) 

The following relation is derived from the lower 

limit of Eq. (4): 

max
3 max

3

R
D R R R

D
    (6) 

Combination of Eqs. (5) and (6) gives: 

max max max max

2 3 2 3

X X R X X R
R

E D E D

 
      

As a result: 

3 max

2 max

D R

E X X



 (7) 

Using a similar approach for the upper limit of Eq. 

(3) and lower limit of Eq. (4), the following 

calculations can be done for the reverse limits of 

Eqs. (3) and (4): 

2 max 2 maxEX R X E R X X        

max

2E

X X
R


   (8) 

It should be noted that the range values can get 

negative or positive signs but an absolute value is 

used in calculations [1, 2]. Therefore, Eq. (8) can 

be restated as follows: 

max

2

~
E

X X
R R


   (9) 

and: 

max 4R D R   

max

4

R
R

D
  (10) 

A combined equation is obtained from Eqs. (9) 

and (10) as follows: 

max max max max

4 2 4 2E E

R X X R X X
R

D D

 
      

Thus: 

max 4

2max
E

R D

X X



 (11) 

Comparison of Eqs. (7) and (11) leads to the 

following final relation: 

3 max 4

2 2max
E

D R D

E X X
 


 (12) 

Eq. (12) can be accepted as a fast indicator for the 

control situation of a continuous process. It shows 

that if the ratio of the maximum value for the 

range to the upper domain of individual data gets 

values between their corresponding control factor 

ratios, the process is in-control, and otherwise, if 

the indication ratio becomes smaller than the 

lower control factor ratio or more than the upper 
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control factor ratio, the process would be expected 

to be out-of-control. 

Constants E2, D3, and D4 are available via 

standard tables. These values depend upon the 

sub-group size selected during sampling and 

monitoring program. The control factors for 

different Shewhart control charts are listed in 

Table 2. 

 
Table 2. Factors used for calculation of upper and lower limits of control charts [1, 2]. 

Sub-group size E2 D3 D4 A2 A3 B3 B4 

1 2.660 0 3.267 1.880 2.659 0 3.267 

2 2.660 0 3.267 1.880 2.659 0 3.267 

3 1.772 0 2.574 1.023 1.954 0 2.568 

4 1.457 0 2.282 0.729 1.628 0 2.266 

5 1.290 0 2.114 0.557 1.427 0 2.089 

6 1.184 0 2.004 0.483 1.287 0.030 1.970 

7 1.109 0.076 1.924 0.419 1.182 0.118 1.882 

8 1.054 0.136 1.864 0.373 1.099 0.185 1.815 

9 1.010 0.184 1.816 0.337 1.032 0.239 1.761 

10 0.975 0.223 1.777 0.308 0.975 0.284 1.716 

15 - 0.347 1.653 0.223 0.789 0.428 1.572 

25 - 0.459 1.541 0.153 0.606 0.565 1.435 

 

A similar approach, as employed to the I-MR 

control chart, can be considered for the Xbar-R 

and Xbar-s charts. Calculations for the Xbar-R 

chart include: 

max2 2X A R X A RX    (13) 

3 max 4D R R D R   (14) 

From the upper limit of Eq. (13): 

2ax a 2m m xX A RX X X A R      

Thus: 

max

2

XX
R

A


  (15) 

From the lower limit of Eq. (14): 

max
3 max

3

R
D R R R

D
    (16) 

and the final combined equation is obtained as 

follows: 

max max max max

2 3 2 3

X XX R X R
R

A D A D

 
      

3 max

2 max

D R

A X X



 (17) 

The following calculations can be done for the 

lower limit of Eq. (13) and the upper limit of Eq. 

(14): 

max2 2 maxX XR X A R XA        

max

2

~
X X

R R
A


   (18) 

and: 

max 4R D R   

max

4

R
R

D
  (19) 

Thus: 

max max max max

4 2 4 2

R X X R X X
R

D A D A

 
      

max 4

2max

R D

AX X



 (20) 

Referring to Eqs. (17) and (20), the identification 

relation is obtained as follows: 

3 max 4

2 2max

D R D

A AX X
 


 (21) 

and the final fast response equation for the Xbar-s 

control chart is obtained using a similar 

calculation approach, used for the I-MR and Xbar-

R charts: 

3 max 4

3 3max

B s B

A AX X
 


 (22) 

The calculated factor ratios for the Shewhart 

control charts are given in Table 3. 
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Table 3. Factor ratios proposed for fast identification of control level of industrial processes. 

Chart type I-MR Xbar-R Xbar-s 

Process stability condition 
3 max 4

2 2max
E

D R D

E X X
 


 3 max 4

2 2max

D R D

A AX X
 



 3 max 4

3 3max

B s B

A AX X
 



 

Sub-group size Lower limit Upper limit Lower limit Upper limit Lower limit Upper limit 

1 0 1.2282 0 1.7378 0 1.2287 

2 0 1.2282 0 1.7378 0 1.2287 

3 0 1.4526 0 2.5161 0 1.3142 

4 0 1.5662 0 3.1303 0 1.3919 

5 0 1.6388 0 3.7953 0 1.4639 

6 0 1.6926 0 4.1491 0.0233 1.5307 

7 0.0685 1.7349 0.1814 4.5919 0.0998 1.5922 

8 0.1290 1.7685 0.3646 4.9973 0.1683 1.6515 

9 0.1822 1.7980 0.5460 5.3887 0.2316 1.7064 

10 0.2287 1.8226 0.7240 5.7695 0.2913 1.76 

15 - - 1.5560 7.4126 0.5425 1.9924 

25 - - 3 10.0719 0.9323 2.3680 

3. Verification of Proposed Method 

In order to verify the applicability of the proposed 

method in industrial environments, two series of 

real data sets were obtained from different mineral 

processing plants. The control response of each 

process was first predicted using the developed 

model (based on the I-MR approach), and the 

results obtained were compared with those 

indicated by drawing the process control charts. 

3.1. Case study 1: Ball charge at Zarand Iron 

Ore Complex 

The first verification case study was the unit ball 

charge in grinding circuit at Zarand Iron Ore 

Complex. The grinding circuit includes two 

similar ball mills in series that prepare feed to 

magnetic separators. The details of ball charge 

data sheet during 2015 are presented in Table 4. 

The total ball charge per each ton of feed has been 

accepted and interpreted as process response by 

the processing division engineers. Since only one 

value was reported in each month, the I-MR 

control chart was applied. In addition, the sub-

group size was equal to unity. Thus the lower and 

upper factor ratios from Table 3 are 0 and 1.2282, 

respectively. If the I-MR indication ratio was 

between 0 and 1.2282, the process would be under 

control, and the ball charge program is acceptable; 

otherwise, the process would be out-of-control, 

and the reasons should be identified. The average 

values for the individual data points ( X ) and 

their range ( R ) were 1110.5845 and 883.3655, 

respectively (Table 5). Xmax and Rmax were 

3210.45 and 2936.62 g/t, respectively. From Table 

2, the values for the control factors are E2 = 2.66, 

D3 = 0, and D4 = 3.267. Thus: 

max

max

2936.62
0 1.3985 1.2282

3210.45 1110.58

R

X X
   



 

Therefore, the process is expected to be out-of-

control. For verification of the prediction, the 

process chart was drawn using the range values 

given in Table 5. From Table 1, the graphical 

control lines can be determined as follow: 

883.3655RCL R 
 

4 3.267 883.3655 2885.9550RUCL D R   

 

3 0RLCL D R 
 

The process chart for the ball charge data is 

shown in Figure 2. As seen, an instability trend is 

observed in September, indicating that the process 

is out-of-control, which is in agreement with the 

predicted result. 
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Table 4. Ball charge data sheet at Zarand Iron Ore Complex during 2015. 

Month 

Mill 1 

power 

(MW) 

Mill 2 

power 

(MW) 

Ball 

Charge 

Mill 1 

(t) 

Ball 

Charge 

Mill 2 

(t) 

Total 

Ball 

Charge 

(t) 

Total 

Throughput 

(t) 

Unit Ball 

Charge 1 

(g/t) 

Unit Ball 

Charge 2 

(g/t) 

Total 

Unit Ball 

Charge 

(g/t) 

Jan. 3.9 3.8 100.62 87.36 187.98 113636 885.46 768.77 1654.23 

Feb. 3.8 3.76 34.12 91 125.12 106478 320.49 854.64 1175.12 

Mar. 3.6 3.7 32.37 57.33 89.70 54333 595.77 1055.16 1650.93 

Apr. 3.98 4.03 47.25 32.04 79.29 123206 383.50 260.05 643.56 

May 3.85 4 60.37 84.63 145 161401 374.04 524.35 898.38 

Jun. 3.6 3.5 28.87 27.3 56.17 88029 328.02 310.12 638.14 

Jul. 3.56 3.42 64.75 84.63 149.38 234441 276.19 360.99 637.17 

Aug. 3.24 3 39.37 0 39.37 96043 409.97 0 409.97 

Sep. 3.03 3.09 59.03 88.23 147.26 45869 1286.93 1923.52 3210.45 

Oct. 3.5 3.5 34.61 32.22 66.83 244056 141.81 132.02 273.83 

Nov. 3.8 3.8 32.22 78.98 111.20 90567 355.76 872.06 1227.82 

Dec. 3.9 3.6 65.78 42.11 107.89 118900 553.24 354.16 907.40 

 

Table 5. Range values calculated from individual data for unit ball charges. 

Response Month Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Ave. 

Total Unit 

Ball Charge 

(g/t) 

Indivi

duals 

1654

.23 

1175

.13 

1650

.93 

643.

56 

898

.38 

638

.14 

637

.18 

409

.97 

3210

.45 

273.

83 

1227

.82 

907

.40 

1110

.58 

Range - 
479.

10 

475.

80 

1007

.37 

254

.83 

260

.24 

0.9

7 

227

.20 

2800

.47 

2936

.62 

953.

99 

320

.42 

883.

37 

 

 
Figure 2. Process chart for total unit ball charge at Zarand Iron Ore Complex. 

 

3.2. Case study 2: Metallurgical performance 

at Miduk Copper Complex 

Table 6 shows the metallurgical balance data 

sheet for Miduk Copper Complex in August 2015. 

As seen, the data sheet reports six quality factors 

including daily tonnages and grades of feed and 

product streams, grade of tailings, and final 

concentrate recovery. Each dataset is an average 

value of three measurements during three working 

shifts per day. In order to evaluate the validation 

of the proposed method, the identification ratio 

was first used to assess the control level of each 

factor. Since each dataset was an average of three 

measurements, the sub-group size was three. 

Therefore, the factor ratios were 0 and 1.4526 for 

the lower and upper limits, respectively. The 

single, average, and maximum values for 

individuals and range were calculated for the 

metallurgical factors and shown in Table 6. Using 

the I-MR identification equation (Table 3), the 

control level of each factor can be predicted as 

follows: 

 Feed tonnage is under control because 

2253.68
0 1.0501 1.4526

21540.93 19394.88
  


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 Feed grade is under control because 

0.14
0 1.1224 1.4526

0.81 0.68
  


 

 Concentrate tonnage is under control 

because 

78.59
0 0.8127 1.4526

499.57 402.86
  


 

 Concentrate grade is under control 

because 
2.32

0 1.0112 1.4526
32.64 3034

  


 

 Tailings grade is out-of-control because 

0.06
0 1.7654 1.4526

0.1 0.07
  


 

 Recovery is out-of-control because 

34.12
0 1.5681 1.4526

113.96 92.20
  


 

Process control charts were also drawn for the 

metallurgical factors using the conventional 

equations given in Table 1. Figure 3 shows the 

process charts plotted using the center line and 

control limits calculated for all factors (Table 7). 

As seen, the control charts clearly confirm the 

conditions predicted by the developed method. 

The superiority of the proposed method over the 

conventional chart-based method is highlighted 

when an engineer decides to run a comprehensive 

control monitoring program for the entire 2015. 

There, the engineer must first check 72 process 

control charts (12 months   6 factors) to indicate 

the process level situation before evaluation of 72 

data control charts. Using the developed method, 

the need for plotting process control charts is 

eliminated, and the engineer would need only to 

check the data charts. 

 
Table 6. Control parameters and metallurgical performance data sheet for Miduk Copper Complex. 

Date 

Feed Concentrate Tailings Recovery 

(%) Tonnage (t/d) Grade (%) Tonnage (t/d) Grade (%) Grade (%) 

Xi Ri Xi Ri Xi Ri Xi Ri Xi Ri Xi Ri 

Aug-01-15 19642.23 - 0.58 - 421.34 - 28.72 - 0.06 - 106.81 - 

Aug-02-15 19836.25 194.02 0.68 0.108 467.85 46.509 27.10 1.618 0.04 0.013 93.78 13.030 

Aug-03-15 19546.18 290.07 0.70 0.019 473.59 5.742 27.29 0.193 0.06 0.017 94.43 0.644 

Aug-04-15 19834.33 288.15 0.60 0.098 432.36 41.233 26.75 0.541 0.05 0.010 96.86 2.438 

Aug-05-15 19594.20 240.12 0.70 0.094 438.17 5.810 29.07 2.325 0.09 0.040 93.39 3.473 

Aug-06-15 20266.55 672.35 0.76 0.065 470.16 31.994 30.69 1.614 0.06 0.030 93.58 0.189 

Aug-07-15 19388.46 878.09 0.73 0.030 404.90 65.265 32.52 1.835 0.06 0 92.91 0.666 

Aug-08-15 19243.77 144.69 0.73 0.005 405.94 1.047 32.26 0.263 0.05 0.013 93.70 0.786 

Aug-09-15 19272.71 28.94 0.64 0.082 372.75 33.194 30.78 1.479 0.08 0.033 92.39 1.309 

Aug-10-15 19089.43 183.27 0.68 0.036 383.81 11.066 31.52 0.739 0.05 0.032 93.12 0.730 

Aug-11-15 18491.38 598.05 0.62 0.056 341.11 42.702 31.30 0.216 0.05 0 92.53 0.591 

Aug-12-15 19292.00 800.61 0.61 0.014 376.61 35.498 29.26 2.045 0.04 0.007 93.57 1.045 

Aug-13-15 19388.46 96.46 0.61 0.003 370.34 6.269 29.77 0.508 0.10 0.060 93.54 0.030 

Aug-14-15 18894.24 494.22 0.63 0.023 382.91 12.567 28.54 1.224 0.08 0.020 91.75 1.798 

Aug-15-15 18547.38 346.86 0.67 0.039 326.32 56.589 28.70 0.159 0.10 0.020 75.37 16.379 

Aug-16-15 19788.25 1240.87 0.77 0.099 325.97 0.350 30.69 1.991 0.07 0.025 65.77 9.601 

Aug-17-15 19109.43 678.82 0.63 0.139 389.37 63.398 30.87 0.173 0.05 0.025 99.88 34.118 

Aug-18-15 18481.38 628.05 0.68 0.050 442.34 52.971 32.38 1.513 0.05 0.004 113.96 14.077 

Aug-19-15 20185.33 1703.94 0.80 0.121 462.77 20.429 32.64 0.261 0.06 0.006 93.45 20.513 

Aug-20-15 20088.98 96.35 0.81 0.007 475.91 13.139 31.91 0.734 0.07 0.010 93.55 0.103 

Aug-21-15 19423.80 665.17 0.68 0.130 397.31 78.593 30.57 1.340 0.10 0.030 92.27 1.287 

Aug-22-15 19807.48 383.68 0.62 0.058 342.82 54.495 32.20 1.639 0.06 0.037 90.08 2.190 

Aug-23-15 20191.16 383.68 0.74 0.124 410.65 67.836 31.94 0.265 0.06 0 87.40 2.674 

Aug-24-15 19615.64 575.52 0.70 0.044 386.04 24.615 30.56 1.382 0.10 0.036 86.04 1.365 

Aug-25-15 18867.46 748.17 0.66 0.036 389.19 3.148 29.77 0.788 0.05 0.050 92.61 6.578 
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    Table 6. Continued.     

Aug-26-15 19500.54 633.07 0.63 0.032 387.62 1.566 29.94 0.169 0.04 0.013 94.29 1.676 

Aug-27-15 18233.96 1266.58 0.71 0.079 372.27 15.357 30.02 0.083 0.05 0.011 86.30 7.988 

Aug-28-15 16770.12 1463.84 0.71 0.002 347.09 25.175 31.36 1.339 0.08 0.033 91.13 4.831 

Aug-29-15 19023.80 2253.68 0.61 0.098 359.45 12.359 30.00 1.365 0.07 0.014 92.26 1.124 

Aug-30-15 20285.33 1261.52 0.74 0.128 432.11 72.661 31.56 1.567 0.10 0.034 90.56 1.694 

Aug-31-15 21540.93 1255.60 0.76 0.019 499.57 67.459 29.88 1.685 0.07 0.030 91.02 0.454 

Average 19394.88 683.15 0.68 0.060 402.86 32.300 30.34 1.040 0.07 0.020 92.20 5.110 

Max. 21540.93 2253.68 0.81 0.140 499.57 78.590 32.64 2.320 0.10 0.060 113.96 34.120 

 
Table 7. Center line and control limits calculated for metallurgical factors of Miduk Copper Complex. 

Factor Center Line (CLR) 
Control Limits 

Upper (UCLR) Lower (LCLR) 

Feed tonnage 683.15 1758.4272 0 

Feed grade 0.06 0.1575 0 

Concentrate tonnage 32.30 83.1432 0 

Concentrate grade 1.04 2.664307802 0 

Tailings grade 0.02 0.0562 0 

Concentrate recovery 5.11 13.1601 0 

 

 

 

 
Figure 3. Process charts for metallurgical factors at Miduk Copper Complex. 
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4. Conclusions 

A common method to assess the stability and 

control conditions of industrial processes is the 

use of control charts. However, when a large 

number of data is needed to be analyzed, drawing 

the corresponding control charts is significantly 

time-consuming. Although these charts can be 

drawn using some professional softwares, special 

difficulties usually arise during interpretation of 

and decision-making about the correlation 

between the data and the process charts. The 

developed method accelerates the interpretation 

process of the data charts by eliminating the need 

for drawing the process charts. The proposed 

method was verified through a comparative study 

of the mineral processing plants in Zarand Iron 

Complex and Meiduk Copper Complex. 
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 چکیده:

صنعتی ارائه شده است که شامل دو نسبت فاکتور مشتق شده از ثوابت کنترلیی بیرای   یندهای آدر این مقاله، روشی جدید به منظور تعیین سریع شرایط پایداری فر

ها به تفاضل مقادیر حداکثری و مییانیین  حدود کنترلی بالا و پایین هر فرآیند است. سپس، یک نسبت تعیین )شاخص( به صورت نسبت بیشترین مقدار دامنه داده

هیای  تعریف شده، چنانچه نسبت تعیین برای یک سری داده پیوسته صنعتی بیین مقیادیر کمینیه و بیشیینه نسیبت     های خام تعریف شد. بر اساس پارامترهای داده

آمیی  بیا   ور موفقییت فاکتور متناظر قرار گیرد، فرآیند تحت کنترل است و در غیر این صورت، فرآیند خارج از کنترل خواهد بود. اعتبارسنجی روش پیشنهادی به ط

انجام شد. نتیای  ماالعیات اعتبارسینجی     شهر بابک، ایران(داده به دست آمده از مجتمع سنگ آهن زرند )زرند، ایران( و مجتمع مس میدوک )استفاده از دو دسته 

م نییاز بیه   بینی انجام شده با روش جدید با روش متداول رسم و تحلیل نمودارهای کنترل فرآیند، سازگار است. از م ایای کلیدی روش جدید، عدنشان داد که پیش

شود که برای تحلیل شرایط یک فرآیند نیاز به رسم و تحلیل تعیداد  رسم نمودارهای کنترلی برای ارزیابی شرایط کنترلی فرآیند است. این م یت زمانی آشکارتر می

 شود.های ب رگ مشاهده میقابل توجهی از نمودارهای کنترلی باشد؛ شرایای که در اغلب کارخانه

 های پیوسته.ایش فرآیند، نمودار کنترلی، نسبت فاکتور، فرآیندهای صنعتی، دادهپ کلمات کلیدی:

 

 

 


