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Abstract 

Analysis of the stresses, displacements, and horizontal strains of the ground subsidence due to underground 

excavation in rocks can be accomplished by means of a hybridized higher order indirect boundary ele-

ment/finite difference (BE/FD) formulation. A semi-infinite displacement discontinuity field is discretized 

(numerically) using the cubic displacement discontinuity elements (i.e. each higher order element is divided 

into four sub-elements bearing a cubic variation in the displacement discontinuities). Then the classical finite 

difference formulation (i.e. the backward, central, and forward finite difference formulations) is hybridized 

using the boundary element formulation, enabling us to obtain the nodal tangential stresses and horizontal 

strains along the elements. Several example problems are solved numerically, and the results obtained are then 

compared with their corresponding results available in the literature. These comparisons show the effectiveness 

and validness of the proposed method. A classical practical problem is also used to verify the applicability of 

the hybridized method. 

 

Keywords: Subsidence, Horizontal strain, Semi-infinite problems, Indirect boundary element method, Finite 

difference method, Higher order elements. 

1. Introduction 

Theoretical and empirical modeling of the  

subsidence phenomenon on the surface of  

underground structures such as big coal mines have 

started since the late 1950’s. The principal  

developments of these models are given by NCB 

(National Coal Board) [1]. Computer programs 

have been provided to perform multiple  

calculations of subsidence and its associated strains 

(for example, horizontal strains) [2, 3]. The  

reliability and accuracy of the prediction models 

can be judged based on the comparisons made with 

the field data gathered under different conditions 

by many investors from several countries [4].  

Several numerical modelings such as the finite 

element method (FEM), finite difference method 

(FDM), and boundary element method (BEM) may 

be used to calculate the stress, displacement, and 

strain fields on the ground surfaces of a subsided 

area above underground excavations [5-10]. BEM 

has been widely used to solve many problems in  

various engineering fields such as the electrical, 

mechanical, civil, and mining ones [11-23]. 

Indirect BEM may be regarded as a kind of dual 

boundary element method [24] because the dual 

surfaces of a straight line cracking element are 

simultaneously considered in the elastic solution of 

solid substances, as explained by Crouch and  

Starfield (1983). The higher order displacement 

discontinuity method (which is a version of the 

indirect BEM) was originally developed for solving 

plane elasticity and fracture mechanics problems in 

finite, infinite, and semi-infinite domains [25-28]. 

In the present work, a hybridized form of the  

semi-infinite higher order displacement  

discontinuity and finite difference methods is  

proposed to calculate the stresses, displacements, 

and horizontal strains for a conventional subsided 

area due to underground excavations (e.g. a  

shallow circular excavation and a longwall coal 

mine). 
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The fundamental solution to the kernel of the  

displacement discontinuity method is the Kelvin 

solution. For the solution of a problem with finite 

dimensions (e.g. the semi-infinite shallow tunnel 

problem), the Kelvin solution cannot be used  

directly (because this solution is for a point source 

in an infinite domain). Therefore, some particular 

solutions can be added to it to model the stress free 

condition at the ground surface of a shallow tunnel 

(e.g. the image solution explained for the  

displacement discontinuity method by Crouch and 

Starfield (1983)). In this work, the higher order 

displacement discontinuity method is applied for 

semi-infinite problems using boundary elements 

with a cubic variation in the displacement  

discontinuities in order to solve the shallow tunnel 

problem. The tangential stresses along the  

boundary of the problem and also on its ground 

surface cannot be obtained as a direct solution to 

the displacement discontinuities by the Greens 

function theory. Thus the finite difference method 

was added to the solution to enable us to compute 

the tangential stresses on the boundary of the  

excavation and the horizontal stresses on the 

ground surface of the semi-infinite shallow tunnel 

problems. In order to get more accurate results for 

stresses and displacements, a cubic variation in 

displacement discontinuity was assumed along 

each boundary element. 

In this work, the Mindlin solution was considered 

for a shallow circular cavity under the plane strain 

condition as an example problem of the shallow 

excavations [29]. Therefore, a 2D displacement 

discontinuity method was hybridized with the  

classical finite difference method using a cubic 

variation in the displacement discontinuity to  

estimate the tangential stresses along the boundary 

of the ground surface above an underground  

excavation. 

To verify the applicability of the hybridized  

method for the subsidence analysis of underground 

coal mining (long-wall method), a classical  

practical problem was also solved numerically. 

2. Hybridized higher order displacement  

discontinuity-finite difference formulation for 

semi-infinite plane elasticity problems 

The constant displacement discontinuity 

)or  ( yxi DDD  is defined as the displacement  

between the two sides of a boundary element on the 

x axis, as [11]: 

  ,  ),0,()0,(  - yxixuxuD iii  
 (1) 

In this research work, a cubic variation in  

displacement discontinuity along each boundary 

element (as shown in Figure 1) was used as what 

follows 

1 2
i 1 i 2 i

3 4
3 i 4 i

D ( ) N ( )D N ( )D

N ( )D N ( )D , i x,y

     

   

 (2) 

where, 321 ,, iii DDD , and 4

iD  are the cubic nodal 

displacement discontinuities, and their four-related 

shape functions using equal sub-elements (i.e. 

4321 aaaa  ) could be defined as what follow: 

3 2 2 3 3
1 1 1 1 1

3 2 2 3 3
2 1 1 1 1

3 2 2 3 3
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 (3) 

 

 
Figure 1. Cubic displacement discontinuity variation 

along a boundary element of length 2a. 

  

The displacements and stresses for a line crack in 

an infinite body along the x-axis in terms of the 

single harmonic functions g(x,y) and f(x,y) are [11]: 

   

     )1(2)21(

)21()1(2
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 (4) 

and the stresses are: 
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 (5)  

where  is the shear modulus, and ,,,, ,,,, yyxx gfgf

etc. are the partial derivatives of the single harmon-

ic functions f(x,y) and g(x,y) with respect to x and 

y, in which these potential functions for the cubic 

element case can be found from: 

4
j
x j i

j 1

4
j
y j i

j 1

1
f (x, y) D F (I ) ,  i 1 to 4

4 (1 )

1
g(x, y) D F (I ) ,   i 1 to 4

4 (1 )






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
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 (6) 
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in which, the common function, )( ij IF , can be 

defined as: 

1
2 2

j i jF (I ) N ( )ln (x ) y d ,

j= 1  to 4,   i 1 to 4

      
 



  (7) 

where the integrals 
321 ,, III , and 

4I  can be ex-

pressed as: 

1
a 2

2 2
1

a
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I (x, y) ln (x ) y d
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(8-c) 
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The terms 1, 2, r1, and r2 in this equation are  

defined as follow: 

   2
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2
2
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 (9) 

The partial derivatives of the constant, linear, and 

quadratic integrals 321 ,, III are given in the  

literature [18], and the partial derivatives of the 

cubic integral
4I are given in appendix A for  

completeness. 

Considering the typical elements i and j  along the 

boundary of the problem and the elemental shear 

and normal boundary conditions i

sb  and i

nb   

corresponding to the influence coefficients ),( jiCss , 

),( jiCsn , ),( jiCns , ),( jiCns , the general solution to 

the problem can be given as [11]: 

N N
i i j
s ss s sn n

j 1 j 1

N N
i i j
n ns s nn n

j 1 j 1

b C (i, j)D C (i, j)D ,   i 1 to N

 b C (i, j)D C (i, j)D ,   i 1 to N

 

 

  

  

 

 

 (10) 

The vertical displacement (surface subsidence) can 

be obtained as a solution to this equation for the 

surface elements. The horizontal strains on the 

surface can be obtained by applying the finite  

difference formulae to the following elastic  

formula for the horizontal and vertical stress  

components, as: 

])1([
21

2

])1[(
21

2

yyxxyy

yyxxxx

ee
G

ee
G





















 (11) 

where G is the shear modulus, and exx and eyy are 

the horizontal and vertical strain components,  

respectively. Considering a positive and negative 

side for the line crack elements, the following  

relations can be readily deduced: 






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
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
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
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



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

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2

11

2

 (12) 

The horizontal strain components are the  

derivatives of the displacements, as: 

x

u
e

x

u
e x

xx
x

xx
















   ,  (13) 

Combining Equations (12) and (13), the horizontal 

strain components may be obtained through the 

following formula: 

xx xx x x x

2G 2G
(u u ) (D )

1 x 1 x

    
     

     
 (14) 

where Dx is the horizontal displacement  

discontinuity component, and this differential form 

of Dx can be solved numerically using the finite 

difference formulae considering the first, central, 

and last elements along the boundary where the 

horizontal strain is to be calculated. 

To solve the shallow tunnel problem, the boundary 

of the problem can be divided into a limited  

number of equal-sized displacement discontinuity 

elements, numbered from left to right. In order to 

find the tangential stresses 


xx

i

  and 


xx

i

  at the i
th
 

element of the boundary, the derivatives (or the 

horizontal strains) 
x

u
e x

xx






  and 

x

u
e x

xx






  at 

this element must be calculated. This is  
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accomplished using the standard finite difference 

method. If function )(xf  stands for either 

xu  or 


xu , the three separate finite difference formulae for 

)(xf
x


at the point 

i

xx  can be written as what 

follow. 

The forward difference formula is: 

ii

ii

xx xx

xfxf

x

f
i













 1

1 )()(
)(  (15) 

the central difference formula is: 

1

1)()(
)(





 







ii

ii

xx xx

xfxf

x

f
i  (16) 

and the backward difference formula is: 

11

11 )()(
)(





 







ii

ii

xx xx

xfxf

x

f
i  (17) 

The numerical analysis of the plane elasticity  

problems in finite, infinite, and semi-infinite bodies 

can be accomplished by programming the above 

formulation based on the general structure given in 

Equation (10). The solution to the subject problem 

in a semi-infinite region 0y  can be obtained 

using Figure 2. The origin of the local x  and y

coordinate system is at the point yx cycx   , . 

The analytical solution to this problem is obtained 

using the procedure known as the method of  

images [11]. Omitting the details of the solution, 

the complete solution for the half-plane 0y  can 

be summarized as: 

SIA

SIA

 

 

ijijijij

iiii uuuu

 


 (18) 

in which A

iu , 
A

ij  are the displacements and 

stresses due to the actual displacement  

discontinuity, I

iu , 
I

ij  are those due to the images, 

and S

iu , 
S

ij  are those resulting from the  

supplementary solutions, respectively. 

The numerical analysis of plane elasticity problems 

in finite, infinite and, semi-infinite bodies can be 

accomplished by programming the above  

formulation based on the general structure of the 

boundary element method [11, 25]. The general 

solution and complete formulation for the higher 

order (cubic elements) displacement discontinuity 

method for half-plane problems is given in the 

following section. 

 

 
Figure 2. Displacement discontinuity in a half-plane

y 0 [11]. 

 

2.1. Actual solutions to displacements and 

stresses 

The analytical solution to a constant element  

displacement discontinuity over the line segment 

x a, y= 0 in the semi-infinite region y 0 (Figure 

3) has already been introduced by Crouch and  

Starfield (1983). 

 

 
Figure 3. Actual and image displacement discontinui-

ties in half-plane y 0 [11]. 

 

The displacements and stresses due to the actual 

displacement discontinuity are denoted by ui
A
 and 

ij
A
; those due to its image, by ui

I
 and ij

I
; and those 

resulting from the supplementary solution, by ui
S
 

and ij
S
. The complete solutions to the semi-infinite 

plane y 0 can be written as: 
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A I S
i i i i

A I S
ij ij ij ij

u u u u                  

      
 (19) 

Considering the geometry shown in Figure 3, the 

displacements and stresses due to the actual  

displacement discontinuities may be written using 

the results explained for the finite and infinite 

planes case. The local yx,  coordinates are related 

to the global x, y coordinates by the following two 

transformation formulae: 





cos)(sin)(

sin)(cos)(

yx

yx

cycxy

cycxx




 (20) 

Denoting the common potential function ),( yxFj
 

by 1),( j

A

j

A

FyxF   and its derivatives by 2, j

A

xj

A

FF  , 

3, j

A

yj

A

FF  , 4, j

A

yxj

A

FF  , 5,, j

A

yyj

A

xxj

A

FFF  , 

6, j

A

yyxj

A

FF  , 7, j

A

yyyj

A

FF  , etc. for the actual  

displacement discontinuities, their cubic element 

formulations in terms of the global x, y coordinates 

are: 

 
   

A A A A A A
4 j

j2 j3 j4 j5 j2x xJ 1

A A A
j

j3 j4 j5 y

1
u {[ 1 2 sin F 2(1 )cos F y(sin F cos F ]D [ 1 2 cos F

4 1

2(1 )sin F y(cos F sin F ]D }




                  

  

      


 (21-a) 

 
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A A A A A A A
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A A
j

j4 j5 y

1
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4 1
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


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 

  
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(21-b) 

The actual stresses are: 

 

A A A A A A A A
2 j j4

j4 j5 j6 j7 j5 j6 j7xx x yj 1

2G
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4 1



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 
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(22-a) 
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A A A A A A A A
4 2 j j

j4 j5 j6 j7 j5 j6 j7yy x yj 1
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


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 
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Displacements and stresses due to image and  

supplementary displacement discontinuity can be 

expressed in terms of the single function ),( yxF j

I

  

and its derivatives, in which the image local yx ,  

coordinates (as shown in Figure 3) are related to 

the x, y coordinates by the following transformation 

formulae: 





cos)(sin)(

sin)(cos)(

yx

yx

cycxy

cycxx





 (23) 

The two types of boundary conditions usually  

considered in plane elasticity problems, i.e. the 

shear and normal stresses boundary conditions s
i
= 

(s
i
)0, n

i
= (n

i
)0 and the shear and normal dis-

placements boundary conditions us
i
= (us

i
)0, un

i
= 

(un
i
)0, in which (s

i
)0, (us

i
)0, etc., are the given 

boundary values for the stresses and displacements 

corresponding to the local yx,  coordinates shown 

in Figure 3, respectively [12, 14]. These boundary 

conditions are defined at the center of each  

four-element patch so that finally, a system of 2(N 

= 4N) algebraic equations in 2(N = 4N) unknown 

displacement discontinuity components are  

obtained as: 
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


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 (24) 



Mirsalari et al./ Journal of Mining & Environment, Vol.8, No.2, 2017 

 

242 

 

The quantities bs
i
 and bn

i
, standing for the known 

boundary values of stress and displacement and 

Css(i, j), etc., are the corresponding influence  

coefficient [11, 12]. 

2.2. Supplementary and image solutions for 

displacements and stresses 

Based on the notation given in Figure 3, the  

combined displacements i

S

i

I

uu   are: 

 
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where, 
I I
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    
 (30) 

3. Verification of FD/BEM (proposed model) 

The analytical solution to the Mindlin problem for 

shallow excavations [29] and the finite difference 

solution to the subsidence of a coal mine (Mazino 

coal mine) [30] were used for the verification of the 

proposed finite difference/boundary element  

method (FD/BEM). 

3.1. Tangential stresses on surface of a shallow 

circular tunnel 

In shallow excavations (the Mindlin problem), 

computation of tangential stresses on the surface is 

very important. To achieve this, a finite difference 

algorithm is added to the semi-infinite  

displacement discontinuity method using the cubic 

displacement discontinuity formulations (the  

proposed numerical method). It is assumed that the 

tunnel is of circular cross-section, and is driven at a 

shallow depth below a stress-free ground surface. 

The Mindlin problem shown in Figure 4 was  

numerically solved by the proposed method  

assuming a circular tunnel with D = 2R = diameter 

of the circular cavity = 2 m, C = depth of the cavity 

center (variable), E = Young modulus = 10 GPa,   

= Poisson’s ratio = 0.2, σh = horizontal stress (far 

field stress) = ‒10 MPa, C/R = ratio of the depth of 

the cavity to its radius (R). 

The analytical solution to this problem is due to 

Mindlin (1939). The displacement discontinuity 

program for the semi-infinite plane elasticity  

problems using cubic elements (SEMICDDM) was 

used for the solution of the same problem. Three 

different cases were considered, i.e. (i) C/R = 1.19, 

(ii) C/R =1.54, and (ii) C/R = 5. 

 
 

Figure 4. Mindlin problem for shallow tunnels [29]. 

 

Figure 5 shows the comparison between the  

approximate and exact values for the normalized 

tangential stress, 
hxx  / , using different numbers of 

elements along the tunnel boundary (for C/R = 

1.54). This Figure shows that as the number of 

elements along the boundary increases, the  

difference between the numerical and analytical 

values decreases. 

Therefore, in the rest of the calculations, the  

number of elements may be fixed at 90. The  

analytical and numerical values for the normalized 

tangential stress, hxx  / , for the three different 

cases are compared in Figures 6-8. These Figures 

show the variation in the tangential stress on the 

ground surface of the shallow tunnels due to the 

changes in depth (i.e. for different C/R ratios). 
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Figure 5. Comparison between approximate (numerical) and exact values for normalized tangential stress, 

hxx  / , 

using different numbers of elements along tunnel boundary (for C/R = 1.54). 
 

 
Figure 6. Comparison between approximate (numerical) and exact values for 

hxx  /  along x axis (i.e. on ground 

surface of shallow tunnel) for C/R = 1.19. 
 

 
Figure 7. Comparison between approximate (numerical) and exact values for 

hxx  /  along x axis (i.e. on ground 

surface of shallow tunnel) for C/R = 1.54. 
 

 
 Figure 8. Comparison between approximate (numerical) and exact values for hxx  /  along x axis (i.e. on ground 

surface of shallow tunnel) for C/R =5. 
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3.2. Subsidence of Mazino longwall mine (Tabas) 

The numerical modeling of a longwall mine  

subsidence [30] solved by a 3D finite difference 

method (FLAC
3D

 code) was compared with the 

numerical results obtained using the proposed 

FD/BEM (SEMICDDM code). Najafi et al. [30] 

have modeled the surface subsidence due to coal 

mine panels at a depth of 200 m in Mazino, Tabas, 

Iran. This surface subsidence was due to mining 

two adjacent longwall panels with a series of chain 

pillars (72.5 m in width) (Figure 9). The  

geometrical and geomechaincal characteristics of 

the Mazino longwall coal mine are presented in the 

Table 1 [30]. 

The maximum surface subsidence given by Najafi 

et al. was 42 cm. The same problem was modeled 

using the SEMICDDM code, and the maximum 

surface subsidence was estimated as 42.5 cm. The 

resulting surface subsidence diagrams were  

compared in Figure 10. 

Therefore, the accuracy of the SEMICDDM code 

was validated by comparing its results with the 

corresponding results obtained analytically (the 

Mindlin problem) or numerically (FLAC
3D

 code). 

 
Table 1. Characteristic of Mazino longwall mine [30]. 

220 Panel Width (m) 

1200 Panel Length (m) 

200 Layer Depth (m) 
2.5 Layer Thickness (m) 

0 (Horizontal) Layer Inclination (Deg) 
72.5 Chain Pillar Width (m) 

Coal Embedded Rock  

3 3.5 Young Modulus (GPa) 
1.6 2.6 Density (ton/m

3
) 

0.29 0.3 Poisson’s Ratio 
23 32 Friction angle (Deg) 

0.5 4.7 Cohesion (MPa) 

 

 
Figure 9. A schematic view of Mazino longwall coal mine [30]. 

 

 
Figure 10. Comparing surface subsidence diagrams obtained by FLAC

3D
 and SEMICDDM codes in Mazino 

longwall mine. 
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4. Ground subsidence and horizontal strain of 

West Panel No. 3 of Parvadeh I in Tabas Coal 

Mine 

As a practical application of the proposed model-

ing, the hybridized method was used for the sub-

sidence analysis of an underground coal mining 

(Panel No. 3 of Parvadeh I in Tabas coal mine lo-

cated in the central part of Iran) (Figure 11). Table 

2 gives some of the characteristics of this mine 

[31]. 

The higher order displacement discontinuity meth-

od was hybridized with the classical finite differ-

ence method using the cubic displacement discon-

tinuity variations along each boundary element to 

estimate the vertical displacements (subsidence) on 

the ground surface of Panel No. 3 (Figure 12). 

Figure 12 shows the maximum surface subsidence 

due to extraction of the West Panel No. 3 of Par-

vadeh 1 Tabas Coal Mine (which is about 46 cm). 

The effect of the coal seam dip on the magnitude of 

the surface subsidence is also presented in this 

Figure. The magnitude of the surface subsidence on 

the left side of the diagram is slightly greater than 

the right side one, which is due to the inclination of 

the coal seam (14 degrees on the left side). It 

should be noted that if the coal seam was flat, then 

both sides of the subsidence diagram would be 

symmetric with respect to the  

y-axis. 

The proposed numerical method was also used to 

predict the horizontal strain variations along the 

ground surface of the above-mentioned panel using 

the forward, central, and backward formulations 

given in Equations 15-17 (Figure 13). 

 
Table 2. Characteristic of Parvade I in Tabas Coal 

mine (C1 Layer) [31]. 

207 Panel Width (m) 

357 Layer Depth (m) 
2 Layer Thickness (m) 

14.24 Layer Inclination (Deg) 

Coal Embedded Rock  

1.5 2 Young Modulus (GPa) 
1.5 2.5 Density (ton/m

3
) 

0.3 0.3 Poisson’s Ratio 

 
Figure 11. A schematic view of Panel No. 3 of Parvadeh I in Tabas coal mine. 

 

 
Figure 12. Ground subsidence diagrams using proposed method for West Panel No. 3 of Parvade I in Tabas Coal 

Mine (coal seam inclination is about 14 degrees). 
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Figure 13. Horizontal strain diagrams using proposed method for West Panel No. 3 of Parvade I Tabas Coal Mine 

(coal seam inclination is about 14 degrees). 
 

Figures 13 shows that the magnitude of the  

minimum horizontal strain on the surface due to 

extraction of the West Panel No. 3 of Parvadeh 1 

Tabas Coal Mine is about ‒0.0012, taking place 

near the center of coal seam. At about 400 m on 

both sides of the center of coal seam, the maximum 

horizontal strain on the ground surface may take 

place. The magnitude of the maximum horizontal 

strain is about 0.0005, and it is almost the same at 

both sides of the coal seam. The negative values for 

the horizontal strain at the center of this diagram 

illustrate that the central part of the seam ground 

surface is under compression. At a distance about 

400 m far from this center on both sides, the strain 

is positive, and, therefore, this part is under tension. 

Finally, at a distance about 700 m far from the  

center of this seam (on both sides), the horizontal 

strain tends to zero (which is trivial). 

5. Analysis of geometrical and geomechanical 

effects on subsidence phenomenon 

The main objective of this part is to study the 

ground subsidence behavior by changing the  

different parameters affecting this phenomenon. 

Therefore, the effects of the geometrical and  

geomechanical features of the model on the surface 

subsidence of a coal seam are analyzed numerically 

using the SEMICDDM code. Some of the input 

parameters taken from the results are presented in 

Table 2. 

5.1. Effect of coal seam dip 

The proposed numerical method was used for the 

analysis of the subsidence and horizontal strains for 

inclined seams at various dips. Considering the 

inclined seams at the dip angles of 30, 45, and 60 

degrees with the same specifications given in Table 

2, the effects of seam inclinations on the vertical 

displacements and horizontal strains on the ground 

surface of the excavation were estimated. 

The effects of the coal seam dip angles on the  

subsidence and horizontal strains are shown  

graphically in Figures 14 and 15 for the dip angles 

of 14 (current dip), 30, 45, and 60 degrees,  

respectively. 

Figure 14 illustrates that with increase in the seam 

inclination, the maximum surface subsidence  

decreases. On the other hand, by increasing the 

seam inclination, especially greater than 45  

degrees, the subsidence basin tilts toward the left 

side of the dip direction. 

Figure 15 illustrates that with increase in the seam 

dips (from 14 to 45 degrees), the tensional part of 

the strain diagram does not change sharply, while 

the horizontal strain decreases meaningfully in the 

compressive part of this diagram. By increasing the 

seam dip from 45 to 60 degrees, the magnitude of 

the strain in the tensional part of the diagram  

decreases. This may be because as the dip angle 

increases from 45 to 60 degrees, the seam becomes 

almost vertical. 

5.2. Effect of Young modulus 

Considering the characteristics given in Table 2, 

the effects of variation in the rock properties such 

as Young modulus (E) on the subsidence  

phenomenon are illustrated in Figures 16-18  

(assuming a subsided rock mass with many  

different Young moduli). The effect of Young 

modulus (E) on subsidence (vertical surface  

displacement) is given in Figures 16 and 17. Figure 

16 shows the subsidence diagrams for the Young 

modulus changing from E = 2 GPa (current Young 

modulus) to E = 0.5 GPa, while Figure 17 shows 

the same diagrams for the Young modulus  

changing from E = 2 GPa (current Young modulus) 

to E = 4 GPa.  
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Figure 14. Subsidence diagrams numerically estimated for a coal seam with dip angles of α = 14, 30, 45, and 60 

degrees. 

 

 
Figure 15. Horizontal strain diagrams numerically estimated for a coal seam with dip angles of α = 14, 30, 45, and 

60 degrees. 

 

 
Figure 16. Subsidence diagrams numerically estimated for a rock with different Young modulus (E = 0.5-2 GPa). 
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Figure 17. Subsidence diagrams numerically estimated for a rock with different Young moduli (E = 2-4 GPa). 

 

Figures 16 and 17 illustrate that an increase in the 

value of Young modulus leads to a decrease in the 

subsidence. Especially at low values of Young 

modulus (E = 0.5 to E = 1 GPa), the subsidence 

decreases sharply (which means that the effect of 

Young modulus on weak rock masses is more  

important). The effects of Young modulus (E) on 

the horizontal surface strains are given in Figure 

18.  

Figure 18 shows that a decrease in the Young 

modulus leads to an increase in the magnitude of 

the horizontal strain in both parts of this diagram. 

Comparing Figures 14 to 18 illustrate that the var-

iation in Young modulus only has a particular in-

fluence on the magnitude of the subsidence and 

horizontal strain, while variation in seam dip in 

addition to the changes in the magnitude of subsid-

ence and horizontal strain will also change the loca-

tion of both the maximum subsidence and the max-

imum and minimum horizontal strains. 

 
Figure 18. Horizontal surface strain diagrams numerically estimated for a rock with different Young moduli (E = 

0.5-2 GPa). 

 

5.3. Effect of excavation depth 

Effects of depth of coal seam on the vertical  

displacement and horizontal strain curves of the 

example problem stated in Table 2 may be  

estimated as shown in Figures 19 and 20 for 357, 

257, and 157 m seam depths, respectively. 

As deduced from Figure 19, the effect of seam 

depth on the vertical surface displacement is clear. 

As the coal layer gets closer to the surface, the 

magnitude of the maximum surface subsidence is 

greater. Especially when the seam is very close to 

the surface, this effect is more visible. 

Figure 20 shows that the horizontal surface strain 

sharply decreases as the depth of excavation  

increases. Therefore, as the seam gets closer to the 

surface, the magnitude of the horizontal strain is 

greater. 
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Figure 19. Subsidence diagrams numerically estimated for an excavated coal seam at depths of 357, 257, and 157 m 

below subsided ground surface. 

 

 
Figure 20. Horizontal strain diagrams numerically estimated for an excavated coal seam at depths of 357, 257, and 

157 m below subsided ground surface. 

5. Conclusions 

A higher order indirect boundary element method 

hybridized using the classical finite difference 

method to predict the subsidence and horizontal 

strains (or stresses) is involved in underground 

excavations. The basic formulations and numerical 

procedure were explained briefly. Some example 

problems were numerically solved by the proposed 

hybridized FD/BEM. The first example was that of 

a circular shallow tunnel (Mindlin problem), and 

the second one was from the field (Mazino coal 

mine). The numerical results obtained by solving 

these examples were compared with the corre-

sponding analytical and numerical results cited in 

the literature. These comparisons showed that the 

proposed numerical method could predict the sub-

sidence and horizontal strain component on the 

ground surface by a good approximation. The ef-

fects of coal seam inclination angles and depths, 

and rock properties on the subsidence and horizon-

tal strains of the West Panel No. 3 of Parvade I in 

Tabas Coal Mine (C1 Layer) were numerically 

analyzed by the proposed numerical method. It was 

shown that the coal seam dip angles, the seam 

depth, and the elastic modulus of the rock all 

changed the magnitude and trend of both the sub-

sidence and horizontal strains. It should be noted 

that the boundary of the subsided area tends to 

infinity or is limited for the case of using the nu-

merical method, and therefore, the truncation error 

may be omitted. 
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 چکیده:

تواند توسط فرمولاسیون ترکیبیی   ها می ی افقی ایجاد شده در پدیده نشست سطح زمین ناشی از حفریات زیرزمینی در سنگها کرنشها و  ، جابجاییها تنشتحلیل 

های ناپیوستگی جابجایی درجیه   نهایت با استفاده از المانانجام شود. در این روش یک ناحیه نیمه بی (BE/FD)المان مرزی غیرمستقیم مرتبه بالا/تفاضل محدود 

شیوند کیه ناپیوسیتگی جابجیایی درجیه سیه را نشیان         تقسیم می المان ریزهای مرتبه بالا به چهار  شود )یعنی هر کدام از المان زا سازی )عددی سازی( میسوم مج

شیود و میا را    ب میی دهند(. سپس فرمولاسیون تفاضل محدود معمول )یعنی فرمولاسیون تفاضل محدود پسرو، میانی و پیشرو( با فرمولاسیون المان مرزی ترکی می

سازد. چندین مسئله و مدل با این روش عددی حل شید و نتیایب بیه دسیت  میده از  ن بیا        های افقی برای هر المان می های مماسی و کرنش قادر به محاسبه تنش

داد. بیه منویور بررسیی مقبولییت روش ترکیبیی      ها، مفید بودن و اعتبار روش پیشنهادی را نشان  نتایب مرتبط موجود در مطالعات دیگران مقایسه شد. این مقایسه

 سازی و اجرا شد. پیشنهادی، یک مسئله کاربردی در زمینه نشست زمین نیز مدل

 های مرتبه بالا. نهایت، روش المان مرزی غیرمستقیم، روش تفاضل محدود، الماننشست زمین، کرنش افقی، مسائل نیمه بی کلمات کلیدی:

 

 


