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Abstract

Analysis of the stresses, displacements, and horizontal strains of the ground subsidence due to underground
excavation in rocks can be accomplished by means of a hybridized higher order indirect boundary ele-
ment/finite difference (BE/FD) formulation. A semi-infinite displacement discontinuity field is discretized
(numerically) using the cubic displacement discontinuity elements (i.e. each higher order element is divided
into four sub-elements bearing a cubic variation in the displacement discontinuities). Then the classical finite
difference formulation (i.e. the backward, central, and forward finite difference formulations) is hybridized
using the boundary element formulation, enabling us to obtain the nodal tangential stresses and horizontal
strains along the elements. Several example problems are solved numerically, and the results obtained are then
compared with their corresponding results available in the literature. These comparisons show the effectiveness
and validness of the proposed method. A classical practical problem is also used to verify the applicability of
the hybridized method.

Keywords: Subsidence, Horizontal strain, Semi-infinite problems, Indirect boundary element method, Finite

difference method, Higher order elements.

1. Introduction

Theoretical and empirical modeling of the
subsidence phenomenon on the surface of
underground structures such as big coal mines have
started since the late 1950’s. The principal
developments of these models are given by NCB
(National Coal Board) [1]. Computer programs
have been provided to perform multiple
calculations of subsidence and its associated strains
(for example, horizontal strains) [2, 3]. The
reliability and accuracy of the prediction models
can be judged based on the comparisons made with
the field data gathered under different conditions
by many investors from several countries [4].
Several numerical modelings such as the finite
element method (FEM), finite difference method
(FDM), and boundary element method (BEM) may
be used to calculate the stress, displacement, and
strain fields on the ground surfaces of a subsided
area above underground excavations [5-10]. BEM
has been widely used to solve many problems in

various engineering fields such as the electrical,
mechanical, civil, and mining ones [11-23].

Indirect BEM may be regarded as a kind of dual
boundary element method [24] because the dual
surfaces of a straight line cracking element are
simultaneously considered in the elastic solution of
solid substances, as explained by Crouch and
Starfield (1983). The higher order displacement
discontinuity method (which is a version of the
indirect BEM) was originally developed for solving
plane elasticity and fracture mechanics problems in
finite, infinite, and semi-infinite domains [25-28].
In the present work, a hybridized form of the
semi-infinite higher order displacement
discontinuity and finite difference methods is
proposed to calculate the stresses, displacements,
and horizontal strains for a conventional subsided
area due to underground excavations (e.g. a
shallow circular excavation and a longwall coal
mine).
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The fundamental solution to the kernel of the
displacement discontinuity method is the Kelvin
solution. For the solution of a problem with finite
dimensions (e.g. the semi-infinite shallow tunnel
problem), the Kelvin solution cannot be used
directly (because this solution is for a point source
in an infinite domain). Therefore, some particular
solutions can be added to it to model the stress free
condition at the ground surface of a shallow tunnel
(e.g. the image solution explained for the
displacement discontinuity method by Crouch and
Starfield (1983)). In this work, the higher order
displacement discontinuity method is applied for
semi-infinite problems using boundary elements
with a cubic variation in the displacement
discontinuities in order to solve the shallow tunnel
problem. The tangential stresses along the
boundary of the problem and also on its ground
surface cannot be obtained as a direct solution to
the displacement discontinuities by the Greens
function theory. Thus the finite difference method
was added to the solution to enable us to compute
the tangential stresses on the boundary of the
excavation and the horizontal stresses on the
ground surface of the semi-infinite shallow tunnel
problems. In order to get more accurate results for
stresses and displacements, a cubic variation in
displacement discontinuity was assumed along
each boundary element.

In this work, the Mindlin solution was considered
for a shallow circular cavity under the plane strain
condition as an example problem of the shallow
excavations [29]. Therefore, a 2D displacement
discontinuity method was hybridized with the
classical finite difference method using a cubic
variation in the displacement discontinuity to
estimate the tangential stresses along the boundary
of the ground surface above an underground
excavation.

To verify the applicability of the hybridized
method for the subsidence analysis of underground
coal mining (long-wall method), a classical
practical problem was also solved numerically.

2. Hybridized higher order displacement
discontinuity-finite difference formulation for
semi-infinite plane elasticity problems

The  constant  displacement  discontinuity
D, (D, or D,) is defined as the displacement

between the two sides of a boundary element on the
X axis, as [11]:

D, =t, (X0) -4, (x0%), i=x,y ®
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In this research work, a cubic variation in
displacement discontinuity along each boundary
element (as shown in Figure 1) was used as what
follows

Dj(e) = Ny(e )D} + Ny (e )D? +
N3(e )D} + Ny (e)DF,

()

i=Xy

where, p? D2,D2, and p; are the cubic nodal

displacement discontinuities, and their four-related
shape functions using equal sub-elements (i.e.
a, =a, =a, =4a,) could be defined as what follow:

Ny (e) = —(3a3 —ae —3aje? + &%) / (48a,°%),
N, (&) = (985 — 9a%e —aje? +&°) / (16a,°),
Nj(e) = (985 +9a%e — ae® — &%) / (16a,°),

Ny (e) = —(3a3 + a%e — 3a,e? — &) / (48a,°)

3)
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Figure 1. Cubic displacement discontinuity variation
along a boundary element of length 2a.

The displacements and stresses for a line crack in
an infinite body along the x-axis in terms of the
single harmonic functions g(x,y) and f(x,y) are [11]:

u =20-v)f, - yf |+ |- @-2v)g, - vg,,]
u, =[a-2vf, —vf  J+2a-vg, -vo,,]
and the stresses are:

o= 2025+ VE |+ 2400, + v0 .,
Oy = 2#[— yf,xyy]+ Zu[g,yy - yg,yyy]

Oy = 2,u[2 fo,+ yf'yyy]+ Z,u[— ygvxyy]

®)

where /¢ is the shear modulus, and f,,g,,f,.9,,

etc. are the partial derivatives of the single harmon-
ic functions f(x,y) and g(x,y) with respect to x and
y, in which these potential functions for the cubic
element case can be found from:

-1 4 .
———— > DiF(l)) , i=1to 4

foy) = 47 (1—\/)]-:1

-1 4 (6)
————> DjF(lj), i=1to 4

=g s
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in which, the common function, F (1), can be
defined as:

1
Fi(li) =J‘Nj(a)ln[(x—g)+y2}5d8’
j=1t04, i=1to4

(7)

where the integrals 1,1

ul 1, and 1, can be ex-
pressed as:

1

Lh(x,y) = ? In[(x —g)%+ yZTds =

y(0; —05) — (x —a)In(r) + (x +a)In(r,) — 2a

(8-2)

1

IL(xy) = TS In[(x—s)2+y2fdg: (8 b)

xy(6; — 65) + 0.5(y2 -x%+ az)lnrLl —ax
2

1

Ia(x,y) = } gzln[(x —¢)? +y2J2ds=

%(3x2 —y?)(6, - 0,) + %(3xy2 —x%+a%)In(r) - (8-c)
1,02 3 .3 a5 2 f
3(3><y x® —a’)In(r,) 3 (X -y + 3)
1
1,(%,y) = J'SSIn[(xfg)2+y2Tds:
—-a
—xy(x? = y?)(0; — 0,) + 0.25(3x* — 6x%y? + (8-d)

8a%x? +a* —y!)[In(n) - In(r,)] -

2ax(x° + az)[ln(rl) +In(r) ]+ 1.5ax% — 3axy? + 7a°x / 6

The terms &, &, r;, and r, in this equation are
defined as follow:

0, = arctan(L), 0, = arctan(L),
X—a X+a
X X 9)
= [(x—a)2 + yZF,and r,= [(x+a)2 + yZF

The partial derivatives of the constant, linear, and
quadratic integrals1,,1,,1,are given in the

literature [18], and the partial derivatives of the
cubic integral 1,are given in appendix A for

completeness.
Considering the typical elements iand j along the

boundary of the problem and the elemental shear
and normal boundary conditions bi and b}

corresponding to the influence coefficientsC_ i, j) ,
C,, (i, ), C.(i,J), C.(,j), the general solution to
the problem can be given as [11]:
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. N . N .

bg =2 Css(i,)Ds + 2 Csn (i, D, i=1t0 N
j=1 j=1
Y o 4 (10)
bln = zcns(ilj)Dls + chn(i,j)D%v i=1toN
j=1 j=1
The vertical displacement (surface subsidence) can
be obtained as a solution to this equation for the
surface elements. The horizontal strains on the
surface can be obtained by applying the finite
difference formulae to the following elastic
formula for the horizontal and wvertical stress
components, as:
2G

Oy = E[(l— V)exx + Veyy]
. _.26

Wo1-2v

(11)
[Vexx + (1_ V)eyy]
where G is the shear modulus, and e, and e, are
the horizontal and wvertical strain components,
respectively. Considering a positive and negative
side for the line crack elements, the following
relations can be readily deduced:

;26 1%

IR et
12
- 2G e "4 1% o - (12)
R S T B
The horizontal strain components are the
derivatives of the displacements, as:
v ou, - _ou, (13)

e Y
Combining Equations (12) and (13), the horizontal
strain components may be obtained through the
following formula:
2G 0

— Uy ) = _&(Dx)

1-v (14)

where D, is the horizontal displacement
discontinuity component, and this differential form
of D, can be solved numerically using the finite
difference formulae considering the first, central,
and last elements along the boundary where the
horizontal strain is to be calculated.

To solve the shallow tunnel problem, the boundary
of the problem can be divided into a limited
number of equal-sized displacement discontinuity
elements, numbered from left to right. In order to

find the tangential stresses v and oy at the i"

element of the boundary, the derivatives (or the
horizontal strains) e, = ou, and e, = a;x at
X

calculated. This is

this element must be
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accomplished using the standard finite difference
method. If function f(x) stands for either u = or

u,”, the three separate finite difference formulae for

0 . : .
x f(x) at the point x = x can be written as what

follow.
The forward difference formula is:
o, _f-f(x)
(aX)x:x' - Xi+l _ Xi (15)
the central difference formula is:
of () - f(x')
(aX)x:x‘ - X _xit (16)
and the backward difference formula is:
i B f(xi+1)_ f (Xifl)
(aX)X:Xi - Xi+1 _ Xi—l (17)

The numerical analysis of the plane elasticity
problems in finite, infinite, and semi-infinite bodies
can be accomplished by programming the above
formulation based on the general structure given in
Equation (10). The solution to the subject problem
in a semi-infinite region y <0 can be obtained

using Figure 2. The origin of the local X and ¥y

coordinate system is at the pointX=C,, Yy =-C,.

The analytical solution to this problem is obtained
using the procedure known as the method of
images [11]. Omitting the details of the solution,
the complete solution for the half-plane y <0 can

be summarized as:

S
u=u’+u'+u "
A [ s (18)
0, =0y +0; +0

in which y*, crijA are the displacements and
stresses due to the actual displacement
discontinuity, u,', 6”-' are those due to the images,

and u°, ai]-s are those resulting from the

supplementary solutions, respectively.

The numerical analysis of plane elasticity problems
in finite, infinite and, semi-infinite bodies can be
accomplished by programming the above
formulation based on the general structure of the
boundary element method [11, 25]. The general
solution and complete formulation for the higher
order (cubic elements) displacement discontinuity
method for half-plane problems is given in the
following section.
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Figure 2. Displacement discontinuity in a half-plane

y < 0[11].

2.1. Actual solutions to displacements and
stresses

The analytical solution to a constant element
displacement discontinuity over the line segment
IX|< &, y= 0 in the semi-infinite region y<'0 (Figure
3) has already been introduced by Crouch and
Starfield (1983).

=

I Cx 1

Figure 3. Actual and image displacement discontinui-
ties in half-plane y<0 [11].

The displacements and stresses due to the actual
displacement discontinuity are denoted by u* and
ai; those due to its image, by u;' and o;'; and those
resulting from the supplementary solution, by u®
and o-i,-S. The complete solutions to the semi-infinite
plane y<0 can be written as:
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u=ul +ul 0 X =(x-c,)cos B+(y—c,)sinp

A, I, S (19) - : (20)
Gij:Gij +Gij+6ij y=—(X—CX)S|n,H+(y—Cy)COS,B
Considering the geometry shown in Figure 3, the Denoting the common potential function F(x,y)

A

displacements and stresses due to the actual A A . . A
P by Fj(X,y)=Fj and its derivatives by Fjx=Fj2,

displacement discontinuities may be written using

. .. P A A A A A A A
the results explained for the finite and infinite Fiy=Fp, Fig=Fis, Fim=—-Fjy=Fjs,
planes case. The local X,y coordinates are related A A A A
to the global x, y coordinates by the following two Fisy=Fis, Fim=Fy, etc. for the actual
transformation formulae: displacement discontinuities, their cubic element

formulations in terms of the global x, y coordinates

are:

A -1 A A A A A A
Ux = ——— T {[-(1-2v)sinpFjo+ 2(1- v)cosPFia+ y(sinpFja— cospFjs]D} +[~(1- 2v)cospFjo—
4n(1-v) (21-a)

A A A
2(L-v)sinBFjs—y(cosPFia+sinBF]Dy}

A _ A A A A . A A
Uy = Wl)z +d[(1-2v)cosBFja+ 2(1-v)sinBFja— Y(cosPFja+sinBFs]D} +[—(1- 2v)sin B Fi+ 2(L- v) cosp Fis-
T|1—-V
A A (21-b)
y(sinBFju—cospFis]Dj}
The actual stresses are:
A _ZG ) A . A A . A . A . A A .
Oxx =—— . ?zl{[ZCOS BFja+sin 2B Fjs+y(cos 2B Fjs—sin 2B Fj7 ]D; +[~Fjs+y(sin 2B Fje+ cos 2B Fj7]DJ }
4n(1-v) (22-a)
A _2G 4 . A . A A . A . A . A A .
Oy = mz i{[2sin” BFja—sin 2B Fjs— y(cos 2BFjs+sin 2B Fir]Dy +[-Fis—y(sin2BFjs+cos2BF7]DJ}  (22-b)
TL1—V
A _ZG 4 . A A . A A . A . A .
Oxy = mZ i{[sin 2B Fja—cos 28 Fjs+ y(sin 28 Fjs+ cos 2B Fj7 1D, +[-Y(cos 2B Fje—sin 2B Fj7]Dy (22-c)
mi—V
Displacements and stresses due to image and placements boundary conditions Us= (U)o, Uy'=
supplementary displacement discontinuity can be (Un)o, In which (a5)o, (Us)o, etc., are the given

boundary values for the stresses and displacements
corresponding to the local X,y coordinates shown
in Figure 3, respectively [12, 14]. These boundary

conditions are defined at the center of each
four-element patch so that finally, a system of 2(N

|
expressed in terms of the single function F;(x’,y’)
and its derivatives, in which the image local X'y’

coordinates (as shown in Figure 3) are related to
the x, y coordinates by the following transformation

formulae: = 4N) algebraic equations in 2(N = 4N) unknown
X'=(x-c,)cos B~ (y+c,)sinf displacement  discontinuity ~ components  are
B ) (23) obtained as:
y'=(x-c,)sinB+(y+c,)cos

i N - - i N - - i
The two types of boundary conditions usually b, :ZCSS @i, D +_lecsn (i, D,
considered in plane elasticity problems, ie. the a " (24)
shear and normal stresses boundary conditions as_'z bi = icm(i' j)D) +icnn(i’ D), i=1N
(Yo, on= (cn)e and the shear and normal dis- = =
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2.2. Supplementary and image solutions for

displacements and stresses

Based on the notation given in Figure 3, the
S

The quantities by’ and by, standing for the known
boundary values of stress and displacement and
C«(i, j), etc., are the corresponding influence

coefficient [11, 12]. . . !

icient [ ] combined displacements ui+u; are:
s -1 4 . ! ! . .
U+ Ux :mzjzl{[(l—zlz)smﬂl:jz—2(1—v)cos,BFj3+{(3—4v)(y3|n2,8—ysmﬂ)+

2ysin2ﬂ}l|: ja+{(3—4v)(ycos2p—ycos f) - y(1—20052ﬂ)}||: js+2y(ysin34 -
ysin2p) IIZ js —2y(ycos3p —ycos2p3) IIZ i7]D] +[(1-2v)cos B IIZ jat (25)
2(L=v)sin BF ja—{(3— W)(ycos 23— 7c0s ) - Y}F ju+{(3—Av)(ysin2—

| | | .
ysin B)F js—2y(ycos3f - ycos2) F js—2y(ysin3f - ysin23) F j7]1D;}

lIJy+lSJy = _—12‘;:1{[(1—2v)cos,8 II: j2—2(1—V)Sinﬂ|I: js—{(3—4v)(ycos2p—ycos f)+

4r(l-v)
Y(L—2008 28} ju+{(3—4v)(ysin2— ysin B) ~ 2ysin2 A} F jo+
2y(yc0s 3 — 7005 28) F s+ 2y(ysin3fi - ysin2 ) F 1aID} + (26)
[(L—2v)sin BF j2—2(L—v)cos BF ja—(3—4v)(ysin25—ysin B)F s
—{(B-4)(ycos 23~ Jcos B) + y}F s+ 2y (ysin3f— ysin2) F jo—
2y(ycos3p—ycos2) F 71D/}

| S
The stresses oij+ oij associated with these displacements are:

I S _ 4 I | [
Oxx+0xx = 26 Z {[F js—3(cos 28 F js—sin2B) F js+{2y(cos S —3cos33) +
4rn(l-v)&S

3ycos 2,6)}!': je+3ysin2ﬂ}llz j7—2y(ycos4p—ycos3f) IIZ js—2y(ysin4p— @7)
ysin3p) IIZ jo]D; +[||: is+{2y(sin f—2sin3p) +Sysin2ﬂ)}llz je—{2y(cos S —2cos3p) +

| | | .
3ycos2f}F j7—2y(ysin4B—ysin3p) F je+2y(ycos4B —ycos3p)F jo]D)}

Oy+Oy=—"7T—+

Los 47;(12_GV)Z {[F 1¢— (005 2 F o~ sin2B)F js— (dysin 28— Joos2)}F jo+
j=L

| | .
(4ysin fcos2 +ysin2f}F jr+2y(ysindf - ysin3p) F js]D; + 28)
[IIZ is—{2ysin g -ysin2p) IIZ jo+ (2ycos f—ycos2/3) IIZ i+

| [ .
2y(ysind—ysin3p)F js—2y(ycos4/—ycos3p) F jo]D,}
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| S

_ 4 | I
Oxy+0xy = iz {[sin2BF ja+(cos 2B F ja+{2ysin f(L+4cos2p3) -

477(1—1/) =
| I

ysin2S}F je+{2ycos S(3—4cos23+ ysin2B}F j7+ 2y(ysind g —
| | )

ysin3B)F js—2y(ycos48—ycos3B)F js]D) +[(4ysin Bsin24+

| |
ycos2fB)F js—(4ysinfcos2—ysin2B)F j1—2y(ycos4p —

(29)

| | .
ycos3p) F js—2y(ysindf—ysin3B)F js]D;}
where,

|
o = Fa(X,Y) = F o' Fi(XY)
Fie = Fis(X',Y') = Fixyyy = ——, —5— aija)—/a

3. Verification of FD/BEM (proposed model)
The analytical solution to the Mindlin problem for
shallow excavations [29] and the finite difference
solution to the subsidence of a coal mine (Mazino
coal mine) [30] were used for the verification of the
proposed finite difference/boundary element
method (FD/BEM).

3.1. Tangential stresses on surface of a shallow
circular tunnel

In shallow excavations (the Mindlin problem),
computation of tangential stresses on the surface is
very important. To achieve this, a finite difference
algorithrm is added to the semi-infinite
displacement discontinuity method using the cubic
displacement  discontinuity formulations (the
proposed numerical method). It is assumed that the
tunnel is of circular cross-section, and is driven at a
shallow depth below a stress-free ground surface.
The Mindlin problem shown in Figure 4 was
numerically solved by the proposed method
assuming a circular tunnel with D = 2R = diameter
of the circular cavity = 2 m, C = depth of the cavity
center (variable), E = Young modulus = 10 GPa, V
= Poisson’s ratio = 0.2, o, = horizontal stress (far
field stress) = —10 MPa, C/R = ratio of the depth of
the cavity to its radius (R).

The analytical solution to this problem is due to
Mindlin (1939). The displacement discontinuity
program for the semi-infinite plane -elasticity
problems using cubic elements (SEMICDDM) was
used for the solution of the same problem. Three

| |
Fio = F;j,
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I
o' Fi(X,y)

30
oy (30)

different cases were considered, i.e. (i) C/R = 1.19,
(if) C/R =1.54, and (ii) C/R =5.

v

Figure 4. Mindlin problem for shallow tunnels [29].

Figure 5 shows the comparison between the
approximate and exact values for the normalized
tangential stress, o, /o, , using different numbers of

elements along the tunnel boundary (for C/R =
1.54). This Figure shows that as the number of
elements along the boundary increases, the
difference between the numerical and analytical
values decreases.

Therefore, in the rest of the calculations, the
number of elements may be fixed at 90. The
analytical and numerical values for the normalized
tangential stress, o,/c,, for the three different

cases are compared in Figures 6-8. These Figures
show the variation in the tangential stress on the
ground surface of the shallow tunnels due to the
changes in depth (i.e. for different C/R ratios).
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4
3
T M
A
» .
5 —e— Analytical
1
0

0 10 20 30 40 50 60 70 80 90 100
Number of elements

Figure 5. Comparison between approximate (numerical) and exact values for normalized tangential stress, o,,/o,,
using different numbers of elements along tunnel boundary (for C/R = 1.54).

4
—o— Analytical

3 —a— SEMICDDM
€ 2
P
x
© 1

0

0 02 04 06 08 1X/R1.2 14 16 18 2 22

Figure 6. Comparison between approximate (numerical) and exact values for o, /o, along x axis (i.e. on ground
surface of shallow tunnel) for C/R = 1.19.

3
25
L 2
©
> 15
x
© 1
—e— Analytical
0.5 —a—SEMICDDM
0

0 02 04 06 038 ]7 12 14 16 18 2 22
X/R

Figure 7. Comparison between approximate (numerical) and exact values for o, /o, along x axis (i.e. on ground
surface of shallow tunnel) for C/R = 1.54.

2
15
ey
P le e +F F F—+—+—+—+—
X
5
0.5 —o— Analytical
—4— SEMICDDM
0

0 02 04 06 08 1,512 14 16 18 2 22

Figure 8. Comparison between approximate (numerical) and exact values for o, /o, along x axis (i.e. on ground
surface of shallow tunnel) for C/R =5.
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3.2. Subsidence of Mazino longwall mine (Tabas)
The numerical modeling of a longwall mine
subsidence [30] solved by a 3D finite difference
method (FLAC®® code) was compared with the
numerical results obtained using the proposed
FD/BEM (SEMICDDM code). Najafi et al. [30]
have modeled the surface subsidence due to coal
mine panels at a depth of 200 m in Mazino, Tabas,
Iran. This surface subsidence was due to mining
two adjacent longwall panels with a series of chain
pillars (725 m in width) (Figure 9). The
geometrical and geomechaincal characteristics of
the Mazino longwall coal mine are presented in the
Table 1 [30].

The maximum surface subsidence given by Najafi
et al. was 42 cm. The same problem was modeled
using the SEMICDDM code, and the maximum
surface subsidence was estimated as 42.5 cm. The
resulting surface subsidence diagrams were
compared in Figure 10.

Therefore, the accuracy of the SEMICDDM code
was validated by comparing its results with the
corresponding results obtained analytically (the
Mindlin problem) or numerically (FLAC® code).

Table 1. Characteristic of Mazino longwall mine [30].

Panel Width (m) 220

Panel Length (m) 1200

Layer Depth (m) 200

Layer Thickness (m) 25
Layer Inclination (Deg) 0 (Horizontal)
Chain Pillar Width (m) 725
Embedded Rock Coal

Young Modulus (GPa) 35 3

Density (ton/m°) 2.6 1.6

Poisson’s Ratio 0.3 0.29
Friction angle (Deg) 32 23

Cohesion (MPa) 4.7 0.5

Y
X
Panel _+_
23m
| 220m 1235 m 220m T

Figure 9. A schematic view of Mazino longwall coal mine [30].

Distance (M)

146 246 346 446 546 646 746
0 —

g -0.1

3

e -0.2

[«5)

S

[72]

2 .03

2 ——— FDM (FLAC3D)
04 == SEMICDDM
-0.5

Figure 10. Comparing surface subsidence diagrams obtained by FLAC® and SEMICDDM codes in Mazino
longwall mine.
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4. Ground subsidence and horizontal strain of
West Panel No. 3 of Parvadeh | in Tabas Coal
Mine

As a practical application of the proposed model-
ing, the hybridized method was used for the sub-
sidence analysis of an underground coal mining
(Panel No. 3 of Parvadeh | in Tabas coal mine lo-
cated in the central part of Iran) (Figure 11). Table
2 gives some of the characteristics of this mine
[31].

The higher order displacement discontinuity meth-
od was hybridized with the classical finite differ-
ence method using the cubic displacement discon-
tinuity variations along each boundary element to
estimate the vertical displacements (subsidence) on
the ground surface of Panel No. 3 (Figure 12).
Figure 12 shows the maximum surface subsidence
due to extraction of the West Panel No. 3 of Par-
vadeh 1 Tabas Coal Mine (which is about 46 cm).
The effect of the coal seam dip on the magnitude of
the surface subsidence is also presented in this
Figure. The magnitude of the surface subsidence on
the left side of the diagram is slightly greater than

the right side one, which is due to the inclination of
the coal seam (14 degrees on the left side). It
should be noted that if the coal seam was flat, then
both sides of the subsidence diagram would be
symmetric with respect to the
y-axis.

The proposed numerical method was also used to
predict the horizontal strain variations along the
ground surface of the above-mentioned panel using
the forward, central, and backward formulations
given in Equations 15-17 (Figure 13).

Table 2. Characteristic of Parvade | in Tabas Coal
mine (C1 Layer) [31].

Panel Width (m) 207
Layer Depth (m) 357
Layer Thickness (m) 2
Layer Inclination (Deg) 14.24
Embedded Rock Coal
Young Modulus (GPa) 2 15
Density (ton/m°) 2.5 1.5
Poisson’s Ratio 0.3 0.3

Figure 11. A schematic view of Panel No. 3 of Parvadeh | in Tabas coal mine.
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Figure 12. Ground subsidence diagrams using proposed method for West Panel No. 3 of Parvade | in Tabas Coal
Mine (coal seam inclination is about 14 degrees).
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Figure 13. Horizontal strain diagrams using proposed method for West Panel No. 3 of Parvade | Tabas Coal Mine
(coal seam inclination is about 14 degrees).

Figures 13 shows that the magnitude of the
minimum horizontal strain on the surface due to
extraction of the West Panel No. 3 of Parvadeh 1
Tabas Coal Mine is about —0.0012, taking place
near the center of coal seam. At about 400 m on
both sides of the center of coal seam, the maximum
horizontal strain on the ground surface may take
place. The magnitude of the maximum horizontal
strain is about 0.0005, and it is almost the same at
both sides of the coal seam. The negative values for
the horizontal strain at the center of this diagram
illustrate that the central part of the seam ground
surface is under compression. At a distance about
400 m far from this center on both sides, the strain
is positive, and, therefore, this part is under tension.
Finally, at a distance about 700 m far from the
center of this seam (on both sides), the horizontal
strain tends to zero (which is trivial).

5. Analysis of geometrical and geomechanical
effects on subsidence phenomenon

The main objective of this part is to study the
ground subsidence behavior by changing the
different parameters affecting this phenomenon.
Therefore, the effects of the geometrical and
geomechanical features of the model on the surface
subsidence of a coal seam are analyzed numerically
using the SEMICDDM code. Some of the input
parameters taken from the results are presented in
Table 2.

5.1. Effect of coal seam dip

The proposed numerical method was used for the
analysis of the subsidence and horizontal strains for
inclined seams at various dips. Considering the
inclined seams at the dip angles of 30, 45, and 60
degrees with the same specifications given in Table
2, the effects of seam inclinations on the vertical
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displacements and horizontal strains on the ground
surface of the excavation were estimated.

The effects of the coal seam dip angles on the
subsidence and horizontal strains are shown
graphically in Figures 14 and 15 for the dip angles
of 14 (current dip), 30, 45, and 60 degrees,
respectively.

Figure 14 illustrates that with increase in the seam
inclination, the maximum surface subsidence
decreases. On the other hand, by increasing the
seam inclination, especially greater than 45
degrees, the subsidence basin tilts toward the left
side of the dip direction.

Figure 15 illustrates that with increase in the seam
dips (from 14 to 45 degrees), the tensional part of
the strain diagram does not change sharply, while
the horizontal strain decreases meaningfully in the
compressive part of this diagram. By increasing the
seam dip from 45 to 60 degrees, the magnitude of
the strain in the tensional part of the diagram
decreases. This may be because as the dip angle
increases from 45 to 60 degrees, the seam becomes
almost vertical.

5.2. Effect of Young modulus

Considering the characteristics given in Table 2,
the effects of variation in the rock properties such
as Young modulus (E) on the subsidence
phenomenon are illustrated in Figures 16-18
(assuming a subsided rock mass with many
different Young moduli). The effect of Young
modulus (E) on subsidence (vertical surface
displacement) is given in Figures 16 and 17. Figure
16 shows the subsidence diagrams for the Young
modulus changing from E = 2 GPa (current Young
modulus) to E = 0.5 GPa, while Figure 17 shows
the same diagrams for the Young modulus
changing from E = 2 GPa (current Young modulus)
to E=4 GPa.
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Figure 14. Subsidence diagrams numerically estimated for a coal seam with dip angles of a = 14, 30, 45, and 60
degrees.
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Figure 15. Horizontal strain diagrams numerically estimated for a coal seam with dip angles of o = 14, 30, 45, and
60 degrees.
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Figure 16. Subsidence diagrams numerically estimated for a rock with different Young modulus (E = 0.5-2 GPa).
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Figure 17. Subsidence diagrams numerically estimated for a rock with different Young moduli (E = 2-4 GPa).

Figures 16 and 17 illustrate that an increase in the
value of Young modulus leads to a decrease in the
subsidence. Especially at low values of Young
modulus (E = 0.5 to E = 1 GPa), the subsidence
decreases sharply (which means that the effect of
Young modulus on weak rock masses is more
important). The effects of Young modulus (E) on
the horizontal surface strains are given in Figure
18.

Figure 18 shows that a decrease in the Young
modulus leads to an increase in the magnitude of
the horizontal strain in both parts of this diagram.
Comparing Figures 14 to 18 illustrate that the var-
iation in Young modulus only has a particular in-
fluence on the magnitude of the subsidence and
horizontal strain, while variation in seam dip in
addition to the changes in the magnitude of subsid-
ence and horizontal strain will also change the loca-
tion of both the maximum subsidence and the max-
imum and minimum horizontal strains.

Distance (M)

800 -600 -400 -200 0 200 400 600 800
0.004
_ 0002 = N
= :
RS Yy /
-0.002 N5 j  ——Ee2cm
\ - E=15 GPa
-0.004 </ E=1GPa
— - ~E=0.5GPa
-0.006

Figure 18. Horizontal surface strain diagrams numerically estimated for a rock with different Young moduli (E =
0.5-2 GPa).

5.3. Effect of excavation depth

Effects of depth of coal seam on the vertical
displacement and horizontal strain curves of the
example problem stated in Table 2 may be
estimated as shown in Figures 19 and 20 for 357,
257, and 157 m seam depths, respectively.

As deduced from Figure 19, the effect of seam
depth on the vertical surface displacement is clear.
As the coal layer gets closer to the surface, the
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magnitude of the maximum surface subsidence is
greater. Especially when the seam is very close to
the surface, this effect is more visible.

Figure 20 shows that the horizontal surface strain
sharply decreases as the depth of excavation
increases. Therefore, as the seam gets closer to the
surface, the magnitude of the horizontal strain is
greater.
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Figure 19. Subsidence diagrams numerically estimated for an excavated coal seam at depths of 357, 257, and 157 m
below subsided ground surface.
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Figure 20. Horizontal strain diagrams numerically estimated for an excavated coal seam at depths of 357, 257, and
157 m below subsided ground surface.

5. Conclusions

A higher order indirect boundary element method
hybridized using the classical finite difference
method to predict the subsidence and horizontal
strains (or stresses) is involved in underground
excavations. The basic formulations and numerical
procedure were explained briefly. Some example
problems were numerically solved by the proposed
hybridized FD/BEM. The first example was that of
a circular shallow tunnel (Mindlin problem), and
the second one was from the field (Mazino coal
mine). The numerical results obtained by solving
these examples were compared with the corre-
sponding analytical and numerical results cited in
the literature. These comparisons showed that the
proposed numerical method could predict the sub-
sidence and horizontal strain component on the
ground surface by a good approximation. The ef-
fects of coal seam inclination angles and depths,
and rock properties on the subsidence and horizon-
tal strains of the West Panel No. 3 of Parvade | in
Tabas Coal Mine (C1 Layer) were numerically
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analyzed by the proposed numerical method. It was
shown that the coal seam dip angles, the seam
depth, and the elastic modulus of the rock all
changed the magnitude and trend of both the sub-
sidence and horizontal strains. It should be noted
that the boundary of the subsided area tends to
infinity or is limited for the case of using the nu-
merical method, and therefore, the truncation error
may be omitted.
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Appendix
The integral and derivatives of the common cubic integral, 1,(x,y)

1
a =

2
L(x,y)= Iesln[(x—g)z + y2] de=—xy(x* - y*)(6, - 6,) +0.25(3x* —6x°y” +

8a’x? +a* — y*)[In(r) - In(r,)]- 2ax(x* + a?)[In(r,) + In(r,) ]+ 1.5ax® — 3axy? + 7a’x /6
Letc, = —xy(x® —y?), C, =0.25(3x* —6x%y? +8a?x? +a* —y*), C, = —2ax(x*+a?), C, =1.5ax® —3axy? + 7a°x/6
and L =[In(r)+In(r,)].

Therefore,
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|
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Ly =X, —6Y1g, +18xy1 5 —=9(X* +Y*) g, +2C; Loy +3C1, loyyy + Ciloyyyy + Cilyy
and for the semi-infinite plane case, the following derivatives are also needed:
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