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Abstract

Remote sensing image analysis can be carried out at the per-pixel (hard) and sub-pixel (soft) scales. The
former refers to the purity of image pixels, while the latter refers to the mixed spectra resulting from all
objects composing of the image pixels. The spectral unmixing methods have been developed to decompose
mixed spectra. Data-driven unmixing algorithms utilize the reference data called training samples and end-
members. The performance of algorithms using training samples can be negatively affected by the curse of
dimensionality. This problem is usually observed in the hyperspectral image classification, especially when a
low number of training samples, compared to the large number of spectral bands of hyperspectral data, are
available. An unmixing method that is not highly impressed by the curse of dimensionality is a promising
option. Among all the methods used, Support Vector Machine (SVM) is a more robust algorithm used to
overcome this problem. In this work, our aim is to evaluate the capability of a regression mode of SVM,
namely Support Vector Regression (SVR), for the sub-pixel classification of alteration zones. As a case
study, the Hyperion data for the Sarcheshmeh, Darrehzar, and Sereidun districts is used. The main
classification steps rely on 20 field samples taken from the Darrehzar area divided into 12 and 8 samples for
training and validation, respectively. The accuracy of the sub-pixel maps obtained demonstrate that SVR can
be successfully applied in the curse of dimensional conditions, where the size of the training samples (12) is
very low compared to the number of spectral bands (165).

Keywords: Hydrothermal Alteration, Hyperspectral Remote Sensing, Soft Classification, Spectral
Unmixing, Support Vector Regression (SVR).

1. Introduction

Hyperspectral remote sensing sensors provide
high spectral resolution data compared to the
conventional —multi-spectral  sensors.  Using
hundreds of contiguous spectral channels to
measure reflected electromagnetic energy enables
the hyperspectral sensors to produce huge and
detailed spectral information about the earth
surface materials. Analyzing this huge amount of
data makes possible the uncovering of similar
objects and materials of the earth surface [1-4].

Hyperspectral data is utilized by various types of
applied sciences. The natural sciences and
geosciences also use the hyperspectral data in
geology, soil sciences, hydrology, etc. [5]. During
the past two decades, the enhanced results of the
hyperspectral-based mineral mapping have made
it an important tool to study various types of
surface minerals and rocks [6-7]. The field of
mineral deposit exploration also enjoys this
unique ability of the hyperspectral technology by
identification of the indicator minerals and rocks



Salimi et al./ Journal of Mining & Environment, Vol.8, No.4, 2017

corresponding to the mineral deposits. Essentially,
the lithological anomaly detection is known as a
mineral  exploration method besides the
geochemical and  geophysical  approaches.
Hydrothermal alteration rocks are a kind of
lithological anomalies that have resulted from a
chemical interaction between the host rocks and
the hydrothermal fluids. Spatially, the alteration
rocks are related to the outflow zones of the
hydrothermal systems, and can be applied to
locate mineral deposits [8]. The hydrothermal
alteration mineral mapping through hyperspectral
remote sensing has been widely and successfully
performed for the exploration of various
hydrothermal deposits [9].

The hard and soft classifications are two familiar
concepts in remote sensing image analysis. In the
hard case, it is supposed that each pixel is
completely pure and contains merely one kind of
material. The soft type refers to mixed pixels with
this assumption that more than one material
contribute to the pixels of image [10]. Clearly
speaking, the hard and soft classifications refer to
the per-pixel and sub-pixel analysis, respectively.
It is so much probable that a lot of mixed pixels
exist in remote sensing images, especially in low
spatial resolution images with relatively large
pixels [10-12]. At these scales, every pixel can be
included by several types of materials or objects,
and therefore, the measured spectrum of a pixel is
a combination of spectra resulting from all objects
within the pixel. In addition to the size of pixels,
spectral mixing can happen at small scales like
mineralogy, in which a small rock sample is a
mixture of several minerals [10].

The hard classification of images containing many
mixed pixels can lead to many errors and no
reliable results [13]. In the recent years, a lot of
algorithms have been developed to decompose
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mixed pixels into their class components and to
estimate the abundance of each component, which
have been called the spectral unmixing methods in
the literature [4, 10, 14-15]. The unmixing
methods in the taxonomical tree of spectral
processing methods are categorized as data-driven
approaches (Figure 1) [16]. The data-driven
methods apply reference data that is based on the
utilized algorithm called training samples or
end-members. Training samples are a set of
labeled data containing several features that are
applied to train algorithms. These features in the
remote sensing field are the spectral bands of
images [16].

The size of the training samples with respect to
the features has an important role in the
performance of algorithms so that the insufficient
training samples with respect to the feature space
size can be led to curse of dimensionality and an
important ill-posed problem, i.e. the Hughes
phenomenon [17-19]. These problems can be
potentially observed in the classification of
hyperspectral images because they contain a high
number of spectral bands as the features.
Therefore, preparing enough training samples
with respect to the number of spectral bands
cannot be an easy work, especially when it is tried
to gather the training samples from the studied
area. To take into account this specific nature of
the hyperspectral images, the competent
techniques are required because the traditional
approaches cannot successfully analyze the
massive size of hyperspectral data [19]. Among
the data-driven unmixing methods (Figure 1), the
kernel-based SVM method is a more promising
algorithm to handle the curse of dimensionality
and Hughes phenomenon, especially when the
size of the training dataset is limited [2-3, 18,
20-22].
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Figure 1. A part of taxonomic tree of spectral processing methods covering unmixing algorithms. Acronyms are
as what follow. LSU: linear spectral unmixing, ICA: independent component analysis, SVM: support vector
machine, ANN: artificial neural network, GA: genetic algorithm, ISU: iterative spectral unmixing, SA: simulated
annealing, MTMF: mixture-tuned matched filtering, OSP: orthogonal sub-space projection, MF: matched
filtering, CEM: constrained energy minimization, ACE: adaptive coherence estimator (Modified from Ref. [16]).
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The widespread hard and soft applications of
SVM in the extensive applied fields have been
presented as a detailed review study by Ref. [21].
Also in the review study of Ref. [10] about
non-linear hyperspectral unmixing, a section has
been devoted to unmixing and soft classification
by SVM.

In this paper, SVR as the regression mode of
SVM is used for soft classification. SVM is
utilized at the simplest mode to predict discrete
targets, while SVR not only utilizes the same
theoretical concepts of SVM but also predicts
continuous variables. Therefore, SVR can be
employed to predict the abundance of the
components of pixels and to generate fractional
classified images [23]. SVR has not previously
been widely used to map minerals and alteration
zones.

Therefore, the main objective of this study is the
soft classification of the alteration zones using a
hyperspectral data and SVR, a consistent
data-driven method for the hyperspectral data
analysis. Preparing sufficient ground truth rock
samples as the training samples requires a field
survey, which is usually time-consuming and
costly. Therefore, we want to evaluate the
performance of SVR when it is applied to classify
the Hyperion hyperspectral data by few numbers
of training samples. Increasing the curse of
dimensionality is the main aim of using a limited
size training set (12 samples in this study)
compared to the great number of Hyperion
spectral bands (165 useable bands).

Our studied area was the Sarcheshmeh and
Darrehzar porphyry type copper mines and
Sereidun district. Due to the importance of the
studied area, its alteration zones have been studied
by various researchers and many kinds of methods
and remote sensing data. In some of the studies,
the multi-spectral data [24-27] has been utilized,
and some others have employed the hyperspectral
data [28-29]. From the viewpoint of applied
methods, there are comparison-based methods for
hard classification such as spectral angle mapper
(SAM) [24, 26] and mixture-based methods for
soft classification such as Mixed Tuned Match
Filtering (MTMF) [25, 28] and Linear Spectral
Unmixing (LSU) [24].

2. Geological setting of studied area

The studied area was Sarcheshmeh Copper Mine
and the eastern, southern, and SE area of
Sarcheshmeh including the Darrehzar mine and
Sereidun district. These areas are located in the
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southern part of the Uromiyeh-Dokhtar Cenozoic
magmatic belt (Figure 2a). This belt with a length
of 1800 Km encloses many types of copper,
molybdenum, and gold mineralization such as the
important mines like Sarcheshmeh, Sungon, and
Meydouk [30].

The giant Sarcheshmeh deposit with the 1200 Mt
ore and the average grade of 0.69% Cu and 0.03%
Mo is known as a typical porphyry Cu deposit
[30]. The alteration types of Sarcheshmeh from
the center to outward are potassic, biotitic, phyllic,
argillic, and propylitic, which are the same with
the alterations of typical porphyry Cu deposits
[30-31]. Potassic is affected by phyllic, strongly
phyllic, and propylitic alterations form spatial
arrangement of its alterations from center to
outside of the deposit [32]. The Darrehzar
porphyry copper deposit is located 8 km to the SE
of Sarcheshmeh. It has almost 67 Mt of the
estimated ore mineral reserve with the average
grade of 0.37% Cu [33]. Eocene
volcano-sedimentary ~ rocks  have  hosted
mineralized diorite and granodiorite formations.
Hydrothermal fluids have extensively altered
these formations into potassic, phyllic, propylitic,
and argillic products. The dimensions of the
alteration zones at the length and width are about
2.2 km and 0.7-1 km, respectively. The phyllic
and argillic zones are surrounded by the propylitic
zone. Although the mentioned zones are
extensively seen in most parts of the area; because
of the surface related to weathering, there is no
potassic alteration at the surface [34]. The
Sereidun district, situated in the east vicinity of
Sarcheshmeh, is composed of different types of
hydrothermal alterations such as propylitic,
phyllic, argillic, and advanced argillic (Figure 2b)
[35].

3. Materials and method

3.1. Hyperion dataset

The data for the hyperspectral Hyperion sensor,
acquired on 26 July 2004, was utilized in this
research work. Our studied area in the available
scene of Hyperion can be seen in Figure 3. The
image spectrum of the three indicator minerals
corresponding to different alteration zones with
their diagnostic spectral absorptions are shown in
Figure 4. After a pre-processing step, 77 spectral
bands for all the 242 available Hyperion bands
were removed, and subsequently, the remaining
165 bands were used for further processing (Table
1). A detailed explanation of the pre-processing
step is comprehensively explained in Ref. [36].
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Figure 2. (a) Location of Cenozoic magmatic belt and studied area in Iran (Modified from Ref. [26]), (b)
Geological map of studied area and locations of three copper deposits: Sarcheshmeh, Sereidun, and Darrehzar
(Modified from Ref. [28]).
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Figure 3. Studied area in Hyperion scene, and locations of Sarcheshmeh, Sereidun, and Darrehzar.
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Figure 4. Hyperion image spectra of muscovite, kaolinite, and chlorite corresponding to phyllic (Darrehzar),
argillic (Sereidun), and propylitic (Darrehzar) zones, respectively. Diagnostic spectral absorption of each mineral
is also illustrated in each case.

Table 1. 165 bands of Hyperion after pre-processing.

Bands Wavelength (nm)
8-57 426-925
79-93 932-1073
95-98 1094-1124
100-115 1144-1295
117-120 1316-1346
131-164 1457-1790
181-189 1961-2042
191-202 2062-2173
204-224 2193-2395

3.2. Training, testing, and validation dataset
(ground truth samples)

Supervised unmixing methods require a training
sample set to properly learn the discriminative
rules of patterns. Moreover, another sample set is
usually required to validate the performance and
generalization capacity of classification. In this
research work, these datasets were selected from
20 samples gathered from the Darrehzar area. To
evaluate the robustness of the SVR regarding a
small size training set, it was tried to apply a small
number of field samples. Therefore, 12 rock
samples of alteration zones were selected as the
training samples, and the 8 remaining samples
were used as the validation samples. All samples
were spectrally measured using analytical spectral
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devices (ASD) at the department of Ecology,
Institute of Science and High Technology and
Environmental Science, Graduate University of
Advanced Technology, Kerman, Iran. The ASD
output was analyzed by an automated mineral
identification program, namely PIMA View, to
see the semi-quantitative abundance of some
alteration minerals. Abundances of the indicator
minerals of the propylitic, phyllic, and argillic
zones were applied to train SVR, and then the

sub-pixel prediction was performed. The
semi-quantitative  abundances of  chlorite,
muscovite, and kaolinite are seen in the

abundance column of Table 2. The spatial
distribution of the field samples is shown in
Figure 5.
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Table 2. Semi-quantitative abundance of three indicator minerals of alteration zones in 12 field samples (training
samples) obtained by PIMA View program.

No (type) Abundance (PIMA View output) (%)

° Alteration  Chlorite Muscovite  Kaolinite
1 Phyllic <5 65 20
2 Phyllic <5 70 <5
3 Phyllic <5 75 <5
4 Phyllic <5 75 <5
5 Argillic <5 20 45
6 Argillic <5 35 50
7 Argillic <5 30 65
8  Propylitic 30 <5 <5
9  Propylitic 40 35 <5
10 Propylitic 45 30 <5
11 Propylitic 60 <5 <5
12 Propylitic 35 15 <5
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307000
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3305000

384000

Train

®x
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Figure 5. Location of 12 training samples (Table 2) and 8 validation samples (Table 4).

3.3. Support Vector Regression (SVR)

SVM and SVR have been investigated in detail in
Ref. [37]. SVR utilizes the concepts of SVM for
regression and function estimation. Similar to
SVM, based on the structural risk minimization,
an optimal hyperplane is defined on the basis of
the available training samples [20, 23]. The
defined hyperplane of SVM discriminates the data
samples of the two classes, while the SVR
hyperplane is used as a function to estimate a
target variable. In the linear case, it estimates the
linear dependency of the input training samples
and the target variables. The non-linear estimation
is also possible using the kernel trick functions. C
is the parameter of SVR, which is exactly the
same with the SVM parameters and plays the
same role in both cases. In addition to C, SVR
applies €, which controls the width of the margin.
SVR tries to minimize a cost function with
maximizaton of the margin and minimization of
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the approximation error [23]. This goal is

formulated as follow [20]:

. 1 - : n *

mm{EH w +Cziz1(‘§i + & )}

v, W.X,-b<e+¢ Yi=1,..,n

W.X +b-y, <e+& Vi=l..n

E,E720 Vi =1,...,n
Where & and &" are the slack variables and C is
the penalization parameter. The above
optimization problem can be solved using the
Lagrange multipliers (o), computing the
Karush-Kuhn-Tucker (KKT) conditions and

solving the obtained dual problem by the
quadratic programming [37].
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4. Results and discussion

4.1. Soft classification by SVR

Using the Hyperion image of the studied area and
20 field samples, the soft classification of the
alteration zones were performed by SVR. Figure 6
is a flowchart, briefly showing four steps of the
classification process including: i. Adjustment of
parameters of SVR, ii. Training of SVR, iii.
Alteration mapping by the trained SVR, and iv.
Validation.

Abundances of three indicator minerals of 12 field
samples (Table 2) were utilized by SVR for the
soft or sub-pixel classification of the alteration
zones in the studied area. Due to the outperformed
results compared to the other kernel functions, the
Radial Basis Function (RBF) was used to
implement the non-linear SVR [38, 39]. To set the
optimum values for parameters of SVR (C and ¢)
and RBF (o), the leave-one-out cross-validation
technique, which is appropriate for the limited
size datasets, was implemented as follows: ¢
(from 5 to 20 with the interval distance of 5), C
(from 500 to 5000 with the interval distance of
500), and o (from 0.1 to 1 with the interval
distance of 0.05). As mentioned in section 3.3, € is
an extra parameter for SVR that controls the
acceptable error of the estimated variable. The
assignment of at least 5% and at most 20% for ¢
can be justifiable because the semi-quantitative
measured values for the mineral abundance by
PIMA View are in percent. In other words, the
assignment of at most 20% for error tolerance of a
semi-quantitative measurement can be a
reasonable choice. The optimum values for these

parameters and their corresponding root mean
square error (RMSE) obtained by the
leave-one-out cross-validation error estimator are
displayed in Table 3.

The trained SVR by the optimum parameters
(Table 3) was utilized to map the alteration zones
in the studied area. The final sub-pixel classified
maps of the three indicator minerals is illustrated
in Figure 7.

4.2. Validation

The 8 field samples unseen by SVR were used for
validation. These results are represented in Table
4. The abundances of minerals for each sample
are also found in this table. These values were
semi-quantitatively estimated using the PIMA
View software.

It can be observed in Table 4 that the estimated
abundance of some samples by SVR are negative
values or sum of the abundance values is more
than 100%, both of which are meaningless. We
can address these to the erroneous training
samples and the semi-quantitative nature of the
PIMA View program as the main reasons for
observing such meaningless values. The collected
training field samples are very small compared to
the pixels of Hyperion image covering an area
equal to 30 x 30 m’. Therefore, this sampling
cannot be quite representative.

For a visual comparison, soft predictions of SVR
are also illustrated in Figures 8a, 8b, and 8c with
location of validation samples in the alteration
map of the Darrehzar area.

Table 3. Optimum parameters for SVR using leave-one-out cross-validation.

Class SVR Parameters RMSE (%)
Alteration zone Indicator mineral € C c Leave-One-Out cross-validation
Propylitic Chlorite 15 5000 0.2 20.92
Phyllic Muscovite 10 3000 0.15 27.25
Argillic Kaolinite 5 5000 0.15 23.35

Table 4. Semi-quantitative abundance of three indicator minerals of alteration zones in 8 field samples
(validation samples) obtained by PIMA View program. Estimated abundance of each sample by SVR has also
been reported.

No. SVR (%) PIMA View (%)
Chlorite Muscovite Kaolinite = Chlorite Muscovite Kaolinite
1 04 58 27 10 55 <5
2 -14 58 46 <5 55 40
3 -06 77 25 <5 70 25
4 20 32 08 <5 60 20
5 28 48 10 <5 70 25
6 -09 52 57 <5 30 65
7 44 -02 07 35 <5 <5
8 35 33 11 40 20 <5
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Figure 8. Locations of 8 validation field samples taken from studied area on soft alteration maps of SVR: (a)
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5. Conclusions

An appropriate method for hyperspectral data
classification, namely SVR, was applied to the
map alteration zones at the sub-pixel scale. The
main advantage of SVR is its high ability in
classifying high dimensional problems, especially
where ground truth data is not properly available
for training step. To evaluate this capability, the
training phase was performed using a small
number of samples (12 field samples). The
adjustment of the SVR parameters is very
important. Their incorrect estimation can strongly
impress the accuracy of classification. To set the
optimum values for these parameters, the
leave-one-out cross-validation technique was
utilized, which is a proper option for small
datasets. Finally, the sub-pixel alteration maps
were produced by SVR, and the results obtained
were validated by 8 validation samples, which had
no contribution to the classification phase. On the
basis of the acceptable accuracies of the results, it
was concluded that SVR could be successfully
applied to the sub-pixel classification of alteration
zones using high dimensional hyperspectral data.
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