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Abstract 

Remote sensing image analysis can be carried out at the per-pixel (hard) and sub-pixel (soft) scales. The 

former refers to the purity of image pixels, while the latter refers to the mixed spectra resulting from all 

objects composing of the image pixels. The spectral unmixing methods have been developed to decompose 

mixed spectra. Data-driven unmixing algorithms utilize the reference data called training samples and end-

members. The performance of algorithms using training samples can be negatively affected by the curse of 

dimensionality. This problem is usually observed in the hyperspectral image classification, especially when a 

low number of training samples, compared to the large number of spectral bands of hyperspectral data, are 

available. An unmixing method that is not highly impressed by the curse of dimensionality is a promising 

option. Among all the methods used, Support Vector Machine (SVM) is a more robust algorithm used to 

overcome this problem. In this work, our aim is to evaluate the capability of a regression mode of SVM, 

namely Support Vector Regression (SVR), for the sub-pixel classification of alteration zones. As a case 

study, the Hyperion data for the Sarcheshmeh, Darrehzar, and Sereidun districts is used. The main 

classification steps rely on 20 field samples taken from the Darrehzar area divided into 12 and 8 samples for 

training and validation, respectively. The accuracy of the sub-pixel maps obtained demonstrate that SVR can 

be successfully applied in the curse of dimensional conditions, where the size of the training samples (12) is 

very low compared to the number of spectral bands (165). 

 

Keywords: Hydrothermal Alteration, Hyperspectral Remote Sensing, Soft Classification, Spectral 

Unmixing, Support Vector Regression (SVR). 

1. Introduction 

Hyperspectral remote sensing sensors provide 

high spectral resolution data compared to the 

conventional multi-spectral sensors. Using 

hundreds of contiguous spectral channels to 

measure reflected electromagnetic energy enables 

the hyperspectral sensors to produce huge and 

detailed spectral information about the earth 

surface materials. Analyzing this huge amount of 

data makes possible the uncovering of similar 

objects and materials of the earth surface [1-4]. 

Hyperspectral data is utilized by various types of 

applied sciences. The natural sciences and 

geosciences also use the hyperspectral data in 

geology, soil sciences, hydrology, etc. [5]. During 

the past two decades, the enhanced results of the 

hyperspectral-based mineral mapping have made 

it an important tool to study various types of 

surface minerals and rocks [6-7]. The field of 

mineral deposit exploration also enjoys this 

unique ability of the hyperspectral technology by 

identification of the indicator minerals and rocks 
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corresponding to the mineral deposits. Essentially, 

the lithological anomaly detection is known as a 

mineral exploration method besides the 

geochemical and geophysical approaches. 

Hydrothermal alteration rocks are a kind of 

lithological anomalies that have resulted from a 

chemical interaction between the host rocks and 

the hydrothermal fluids. Spatially, the alteration 

rocks are related to the outflow zones of the 

hydrothermal systems, and can be applied to 

locate mineral deposits [8]. The hydrothermal 

alteration mineral mapping through hyperspectral 

remote sensing has been widely and successfully 

performed for the exploration of various 

hydrothermal deposits [9]. 

The hard and soft classifications are two familiar 

concepts in remote sensing image analysis. In the 

hard case, it is supposed that each pixel is 

completely pure and contains merely one kind of 

material. The soft type refers to mixed pixels with 

this assumption that more than one material 

contribute to the pixels of image [10]. Clearly 

speaking, the hard and soft classifications refer to 

the per-pixel and sub-pixel analysis, respectively. 

It is so much probable that a lot of mixed pixels 

exist in remote sensing images, especially in low 

spatial resolution images with relatively large 

pixels [10-12]. At these scales, every pixel can be 

included by several types of materials or objects, 

and therefore, the measured spectrum of a pixel is 

a combination of spectra resulting from all objects 

within the pixel. In addition to the size of pixels, 

spectral mixing can happen at small scales like 

mineralogy, in which a small rock sample is a 

mixture of several minerals [10]. 

The hard classification of images containing many 

mixed pixels can lead to many errors and no 

reliable results [13]. In the recent years, a lot of 

algorithms have been developed to decompose 

mixed pixels into their class components and to 

estimate the abundance of each component, which 

have been called the spectral unmixing methods in 

the literature [4, 10, 14-15]. The unmixing 

methods in the taxonomical tree of spectral 

processing methods are categorized as data-driven 

approaches (Figure 1) [16]. The data-driven 

methods apply reference data that is based on the 

utilized algorithm called training samples or  

end-members. Training samples are a set of 

labeled data containing several features that are 

applied to train algorithms. These features in the 

remote sensing field are the spectral bands of 

images [16]. 

The size of the training samples with respect to 

the features has an important role in the 

performance of algorithms so that the insufficient 

training samples with respect to the feature space 

size can be led to curse of dimensionality and an 

important ill-posed problem, i.e. the Hughes 

phenomenon [17-19]. These problems can be 

potentially observed in the classification of 

hyperspectral images because they contain a high 

number of spectral bands as the features. 

Therefore, preparing enough training samples 

with respect to the number of spectral bands 

cannot be an easy work, especially when it is tried 

to gather the training samples from the studied 

area. To take into account this specific nature of 

the hyperspectral images, the competent 

techniques are required because the traditional 

approaches cannot successfully analyze the 

massive size of hyperspectral data [19]. Among 

the data-driven unmixing methods (Figure 1), the 

kernel-based SVM method is a more promising 

algorithm to handle the curse of dimensionality 

and Hughes phenomenon, especially when the 

size of the training dataset is limited [2-3, 18,  

20-22]. 
 

 
Figure 1. A part of taxonomic tree of spectral processing methods covering unmixing algorithms. Acronyms are 

as what follow. LSU: linear spectral unmixing, ICA: independent component analysis, SVM: support vector 

machine, ANN: artificial neural network, GA: genetic algorithm, ISU: iterative spectral unmixing, SA: simulated 

annealing, MTMF: mixture-tuned matched filtering, OSP: orthogonal sub-space projection, MF: matched 

filtering, CEM: constrained energy minimization, ACE: adaptive coherence estimator (Modified from Ref. [16]). 
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The widespread hard and soft applications of 

SVM in the extensive applied fields have been 

presented as a detailed review study by Ref. [21]. 

Also in the review study of Ref. [10] about  

non-linear hyperspectral unmixing, a section has 

been devoted to unmixing and soft classification 

by SVM. 

In this paper, SVR as the regression mode of 

SVM is used for soft classification. SVM is 

utilized at the simplest mode to predict discrete 

targets, while SVR not only utilizes the same 

theoretical concepts of SVM but also predicts 

continuous variables. Therefore, SVR can be 

employed to predict the abundance of the 

components of pixels and to generate fractional 

classified images [23]. SVR has not previously 

been widely used to map minerals and alteration 

zones. 

Therefore, the main objective of this study is the 

soft classification of the alteration zones using a 

hyperspectral data and SVR, a consistent  

data-driven method for the hyperspectral data 

analysis. Preparing sufficient ground truth rock 

samples as the training samples requires a field 

survey, which is usually time-consuming and 

costly. Therefore, we want to evaluate the 

performance of SVR when it is applied to classify 

the Hyperion hyperspectral data by few numbers 

of training samples. Increasing the curse of 

dimensionality is the main aim of using a limited 

size training set (12 samples in this study) 

compared to the great number of Hyperion 

spectral bands (165 useable bands). 

Our studied area was the Sarcheshmeh and 

Darrehzar porphyry type copper mines and 

Sereidun district. Due to the importance of the 

studied area, its alteration zones have been studied 

by various researchers and many kinds of methods 

and remote sensing data. In some of the studies, 

the multi-spectral data [24-27] has been utilized, 

and some others have employed the hyperspectral 

data [28-29]. From the viewpoint of applied 

methods, there are comparison-based methods for 

hard classification such as spectral angle mapper 

(SAM) [24, 26] and mixture-based methods for 

soft classification such as Mixed Tuned Match 

Filtering (MTMF) [25, 28] and Linear Spectral 

Unmixing (LSU) [24]. 

2. Geological setting of studied area 

The studied area was Sarcheshmeh Copper Mine 

and the eastern, southern, and SE area of 

Sarcheshmeh including the Darrehzar mine and 

Sereidun district. These areas are located in the 

southern part of the Uromiyeh-Dokhtar Cenozoic 

magmatic belt (Figure 2a). This belt with a length 

of 1800 Km encloses many types of copper, 

molybdenum, and gold mineralization such as the 

important mines like Sarcheshmeh, Sungon, and 

Meydouk [30]. 

The giant Sarcheshmeh deposit with the 1200 Mt 

ore and the average grade of 0.69% Cu and 0.03% 

Mo is known as a typical porphyry Cu deposit 

[30]. The alteration types of Sarcheshmeh from 

the center to outward are potassic, biotitic, phyllic, 

argillic, and propylitic, which are the same with 

the alterations of typical porphyry Cu deposits 

[30-31]. Potassic is affected by phyllic, strongly 

phyllic, and propylitic alterations form spatial 

arrangement of its alterations from center to 

outside of the deposit [32]. The Darrehzar 

porphyry copper deposit is located 8 km to the SE 

of Sarcheshmeh. It has almost 67 Mt of the 

estimated ore mineral reserve with the average 

grade of 0.37% Cu [33]. Eocene  

volcano-sedimentary rocks have hosted 

mineralized diorite and granodiorite formations. 

Hydrothermal fluids have extensively altered 

these formations into potassic, phyllic, propylitic, 

and argillic products. The dimensions of the 

alteration zones at the length and width are about 

2.2 km and 0.7–1 km, respectively. The phyllic 

and argillic zones are surrounded by the propylitic 

zone. Although the mentioned zones are 

extensively seen in most parts of the area; because 

of the surface related to weathering, there is no 

potassic alteration at the surface [34]. The 

Sereidun district, situated in the east vicinity of 

Sarcheshmeh, is composed of different types of 

hydrothermal alterations such as propylitic, 

phyllic, argillic, and advanced argillic (Figure 2b) 

[35]. 

3. Materials and method 

3.1. Hyperion dataset 

The data for the hyperspectral Hyperion sensor, 

acquired on 26 July 2004, was utilized in this 

research work. Our studied area in the available 

scene of Hyperion can be seen in Figure 3. The 

image spectrum of the three indicator minerals 

corresponding to different alteration zones with 

their diagnostic spectral absorptions are shown in 

Figure 4. After a pre-processing step, 77 spectral 

bands for all the 242 available Hyperion bands 

were removed, and subsequently, the remaining 

165 bands were used for further processing (Table 

1). A detailed explanation of the pre-processing 

step is comprehensively explained in Ref. [36]. 
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Figure 2. (a) Location of Cenozoic magmatic belt and studied area in Iran (Modified from Ref. [26]), (b) 

Geological map of studied area and locations of three copper deposits: Sarcheshmeh, Sereidun, and Darrehzar 

(Modified from Ref. [28]). 

 

 
Figure 3. Studied area in Hyperion scene, and locations of Sarcheshmeh, Sereidun, and Darrehzar. 
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Figure 4. Hyperion image spectra of muscovite, kaolinite, and chlorite corresponding to phyllic (Darrehzar), 

argillic (Sereidun), and propylitic (Darrehzar) zones, respectively. Diagnostic spectral absorption of each mineral 

is also illustrated in each case. 
 

Table 1. 165 bands of Hyperion after pre-processing. 

 

 

 

 

 

 

 

 

3.2. Training, testing, and validation dataset 

(ground truth samples) 

Supervised unmixing methods require a training 

sample set to properly learn the discriminative 

rules of patterns. Moreover, another sample set is 

usually required to validate the performance and 

generalization capacity of classification. In this 

research work, these datasets were selected from 

20 samples gathered from the Darrehzar area. To 

evaluate the robustness of the SVR regarding a 

small size training set, it was tried to apply a small 

number of field samples. Therefore, 12 rock 

samples of alteration zones were selected as the 

training samples, and the 8 remaining samples 

were used as the validation samples. All samples 

were spectrally measured using analytical spectral 

devices (ASD) at the department of Ecology, 

Institute of Science and High Technology and 

Environmental Science, Graduate University of 

Advanced Technology, Kerman, Iran. The ASD 

output was analyzed by an automated mineral 

identification program, namely PIMA View, to 

see the semi-quantitative abundance of some 

alteration minerals. Abundances of the indicator 

minerals of the propylitic, phyllic, and argillic 

zones were applied to train SVR, and then the 

sub-pixel prediction was performed. The  

semi-quantitative abundances of chlorite, 

muscovite, and kaolinite are seen in the 

abundance column of Table 2. The spatial 

distribution of the field samples is shown in 

Figure 5. 
 

 

 

 

Bands Wavelength (nm) 
 

8–57 
 

79–93 

95–98 

100-115 

117–120 

131–164 

181–189 

191–202 

204–224 

 

426–925 
 

932–1073 

1094–1124 

1144–1295 

1316–1346 

1457–1790 

1961–2042 

2062–2173 

2193–2395 
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Table 2. Semi-quantitative abundance of three indicator minerals of alteration zones in 12 field samples (training 

samples) obtained by PIMA View program. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5. Location of 12 training samples (Table 2) and 8 validation samples (Table 4). 

 

3.3. Support Vector Regression (SVR) 

SVM and SVR have been investigated in detail in 

Ref. [37]. SVR utilizes the concepts of SVM for 

regression and function estimation. Similar to 

SVM, based on the structural risk minimization, 

an optimal hyperplane is defined on the basis of 

the available training samples [20, 23]. The 

defined hyperplane of SVM discriminates the data 

samples of the two classes, while the SVR 

hyperplane is used as a function to estimate a 

target variable. In the linear case, it estimates the 

linear dependency of the input training samples 

and the target variables. The non-linear estimation 

is also possible using the kernel trick functions. C 

is the parameter of SVR, which is exactly the 

same with the SVM parameters and plays the 

same role in both cases. In addition to C, SVR 

applies ε, which controls the width of the margin. 

SVR tries to minimize a cost function with 

maximizaton of the margin and minimization of 

the approximation error [23]. This goal is 

formulated as follow [20]: 
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Where    and   
 
 are the slack variables and C is 

the penalization parameter. The above 

optimization problem can be solved using the 

Lagrange multipliers (α), computing the  
Karush-Kuhn-Tucker (KKT) conditions and 

solving the obtained dual problem by the 

quadratic programming [37]. 

 

No. 
(type) Abundance (PIMA View output) (%) 

Alteration Chlorite Muscovite Kaolinite 

1 Phyllic < 5 65 20 

2 Phyllic < 5 70 < 5 

3 Phyllic < 5 75 < 5 

4 Phyllic < 5 75 < 5 

5 Argillic < 5 20 45 

6 Argillic < 5 35 50 

7 Argillic < 5 30 65 

8 Propylitic 30 < 5 < 5 

9 Propylitic 40 35 < 5 

10 Propylitic 45 30 < 5 

11 Propylitic 60 < 5 < 5 

12 Propylitic 35 15 < 5 
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4. Results and discussion 

4.1. Soft classification by SVR 

Using the Hyperion image of the studied area and 

20 field samples, the soft classification of the 

alteration zones were performed by SVR. Figure 6 

is a flowchart, briefly showing four steps of the 

classification process including: i. Adjustment of 

parameters of SVR, ii. Training of SVR, iii. 

Alteration mapping by the trained SVR, and iv. 

Validation. 

Abundances of three indicator minerals of 12 field 

samples (Table 2) were utilized by SVR for the 

soft or sub-pixel classification of the alteration 

zones in the studied area. Due to the outperformed 

results compared to the other kernel functions, the 

Radial Basis Function (RBF) was used to 

implement the non-linear SVR [38, 39]. To set the 

optimum values for parameters of SVR (C and ε) 

and RBF (σ), the leave-one-out cross-validation 

technique, which is appropriate for the limited 

size datasets, was implemented as follows: ε 

(from 5 to 20 with the interval distance of 5), C 

(from 500 to 5000 with the interval distance of 

500), and σ (from 0.1 to 1 with the interval 

distance of 0.05). As mentioned in section 3.3, ε is 

an extra parameter for SVR that controls the 

acceptable error of the estimated variable. The 

assignment of at least 5% and at most 20% for ε 

can be justifiable because the semi-quantitative 

measured values for the mineral abundance by 

PIMA View are in percent. In other words, the 

assignment of at most 20% for error tolerance of a 

semi-quantitative measurement can be a 

reasonable choice. The optimum values for these 

parameters and their corresponding root mean 

square error (RMSE) obtained by the  

leave-one-out cross-validation error estimator are 

displayed in Table 3. 

The trained SVR by the optimum parameters 

(Table 3) was utilized to map the alteration zones 

in the studied area. The final sub-pixel classified 

maps of the three indicator minerals is illustrated 

in Figure 7. 

4.2. Validation 

The 8 field samples unseen by SVR were used for 

validation. These results are represented in Table 

4. The abundances of minerals for each sample 

are also found in this table. These values were 

semi-quantitatively estimated using the PIMA 

View software. 

It can be observed in Table 4 that the estimated 

abundance of some samples by SVR are negative 

values or sum of the abundance values is more 

than 100%, both of which are meaningless. We 

can address these to the erroneous training 

samples and the semi-quantitative nature of the 

PIMA View program as the main reasons for 

observing such meaningless values. The collected 

training field samples are very small compared to 

the pixels of Hyperion image covering an area 

equal to 30 × 30 m
2
. Therefore, this sampling 

cannot be quite representative. 

For a visual comparison, soft predictions of SVR 

are also illustrated in Figures 8a, 8b, and 8c with 

location of validation samples in the alteration 

map of the Darrehzar area. 

 
 

Table 3. Optimum parameters for SVR using leave-one-out cross-validation. 

 

 

Table 4. Semi-quantitative abundance of three indicator minerals of alteration zones in 8 field samples 

(validation samples) obtained by PIMA View program. Estimated abundance of each sample by SVR has also 

been reported. 

No. 
SVR (%)  PIMA View (%) 

Chlorite Muscovite Kaolinite  Chlorite Muscovite Kaolinite 

1 04 58 27  10 55 < 5 

2 -14 58 46  < 5 55 40 

3 -06 77 25  < 5 70 25 

4 20 32 08  < 5 60 20 

5 28 48 10  < 5 70 25 

6 -09 52 57  < 5 30 65 

7 44 -02 07  35 < 5 < 5 

8 35 33 11  40 20 < 5 

Class  SVR Parameters  RMSE (%) 

Alteration zone Indicator mineral  ε C σ  Leave-One-Out cross-validation 

Propylitic Chlorite  15 5000 0.2  20.92 

Phyllic Muscovite  10 3000 0.15  27.25 

Argillic Kaolinite  5 5000 0.15  23.35 
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Figure 6. Flowchart of soft classification using SVR. 

 

 
Figure 7. Sub-pixel or soft classified maps of alteration zones resulting from SVR: (a) Chlorite (propylitic), (b) 

Muscovite (phyllic), and (c) Kaolinite (argillic). 

 

 
Figure 8. Locations of 8 validation field samples taken from studied area on soft alteration maps of SVR: (a) 

chlorite map (b) muscovite map (c) kaolinite map. 
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5. Conclusions 

An appropriate method for hyperspectral data 

classification, namely SVR, was applied to the 

map alteration zones at the sub-pixel scale. The 

main advantage of SVR is its high ability in 

classifying high dimensional problems, especially 

where ground truth data is not properly available 

for training step. To evaluate this capability, the 

training phase was performed using a small 

number of samples (12 field samples). The 

adjustment of the SVR parameters is very 

important. Their incorrect estimation can strongly 

impress the accuracy of classification. To set the 

optimum values for these parameters, the  

leave-one-out cross-validation technique was 

utilized, which is a proper option for small 

datasets. Finally, the sub-pixel alteration maps 

were produced by SVR, and the results obtained 

were validated by 8 validation samples, which had 

no contribution to the classification phase. On the 

basis of the acceptable accuracies of the results, it 

was concluded that SVR could be successfully 

applied to the sub-pixel classification of alteration 

zones using high dimensional hyperspectral data. 
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 چکیده:

سدتت و در   بنددی  طبقهتصویر، به مطالعات در مقیاس پیکسل،  بندی طبقهشوند. از دیدگاه تصاویر سنجش از دور در دو مقیاس پیکسلی و زیر پیکسلی مطالعه می

و در اصدطلا    های تصویر فقط از یک ندوع مداده تشدکیل شدده    شود. نوع ستت بر این فرض استوار است که پیکسلنرم اطلاق می بندی طبقهمقیاس زیرپیکسلی، 

ازنده آن پیکسل است. برای تجزیده  های طیفی اجزا سنرم اشاره به این دارد که پاسخ طیفی هر پیکسل، ترکیبی از پاسخ بندی طبقهخالص هستند. در سوی مقابل 

هدای  ای بده ندام نمونده   هدای اولیده  های تجزیه طیفی داده پایده از داده گیرند. روشهای تجزیه طیفی مورد استفاده قرار میهای ترکیبی به اجزا سازنده، روشطیف

های آموزشی به تعداد کافی در اختیدار نباشدد تحدت تد میر مشدکلات بدیش       ها هنگامی که نمونهکنند. کارایی این روشآموزشی برای آموزش الگوریتم استفاده می

 یطدور  بده های آموزشی کافی دهد، چرا که تهیه نمونهتصاویر ابرطیفی رخ می بندی طبقهیابد. این مشکل اغلب در کاهش می بندی طبقهابعادی قرار گرفته و دقت 

هدای کرندل پایده ممدل ماشدین بدردار پشدتیبان        شد، معمولاً مشکل است. در چنین شرایطی استفاده از روشمتناسب با تعداد فراوان باندهای تصاویر ابرطیفی با که

(SVM) تواند مفید واقع شود. در این تحقیق از روش رگرسیون بردار پشدتیبان  تر هستند، میکه در مقابل مشکل بیش ابعادی مقاوم(SVR)   بنددی  طبقده بدرای 

نمونده سدنگی برداشدت شدده از منداطق دگرسدانی        61بر اساس  بندی طبقهرچشمه، دره زار و سریدون در کرمان استفاده شد. های مناطق سزیرپیکسلی دگرسانی

باندد   611هدای آموزشدی کدم در مقابدل     نمونه برای اعتبارسنجی نتایج اختصاص یافت. با وجود تعداد نمونه 8نمونه برای آموزش و  66منطقه دره زار انجام شد که 

تواندد  نرم تصاویر ابرطیفی در شرایط بیش ابعاد مدی  بندی طبقهبرای  SVRآمده نشان داد که  دست بهل استفاده در تصویر هایپریون، دقت مطلوب نتایج طیفی قاب

 انتتاب مناسبی باشد.

 رگرسیون بردار پشتیبان.تجزیه طیفی،  نرم، بندی طبقه دگرسانی گرمابی، سنجش از دور ابرطیفی، کلمات کلیدی:
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