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Abstract 

The soil samples were collected from 170 sampling stations in an arid area in Shahrood and Damghan, 

characterized by prevalence of mining activity. The levels of Co, Pb, Ni, Cs, Cu, Mn, Sr, V, Zn, Cr, and Tl 

were recorded in each sampling location. A new method known as min/max autocorrelation factor (MAF) 

was applied for the first time in the environmental research works to de-correlate these elements before their 

geo-statistical simulation. The high cross-correlation among some elements, while poor spatial correlation 

among the others, could have made spectral decomposition of MAFs unstable, resulting in some negative 

eigenvalues, so it was decided to reduce the dimensionality of the original variables by Principal Component 

Analysis (PCA). The resultant 6 heavy metals (Cr, Mn, Cu, V, Ni, and Co) were converted to their respective 

MAFs followed by their geo-statistical simulation using Sequential Gaussian Simulation (SGS) 

independently. Examination of the cross-variograms of MAFs indicated that the resultant factors had been 

rigorously de-correlated, especially at zero lag and around ∆ lag distance. Several validation checks 

including reproduction of variograms in data and normal score space, close matching between distribution of 

MAFs versus simulated realizations, and reproduction of descriptive statistics and data histograms all 

confirmed that the data values had been honored by this applied method. The results obtained indicated that 

this method could reproduce the data values as well as the spatial continuity of heavy metals (e.g. semi-

variograms) successfully. In addition, this technique is simpler and more computationally efficient than its 

equivalent sequential Gaussian co-simulation as fitting a linear model of co-regionalization (LMC) is not 

required in the data-driven MAF method. 

 

Keywords: Decorrelation, Geo-Statistical Simulation, Min/Max Autocorrelation Factor. 

1. Introduction 

An issue in the spatial assessment of soil and 

environmental attributes is that the information is 

only available at a limited number of sampling 

locations, which necessitates adopting methods to 

quantify the distribution and variability of the 

property of interest at unsampled locations. For 

this purpose, univariate kriging methods such as 

ordinary kriging [1], regression kriging [2], 

indicator kriging [3], and factorial kriging [4] 

have been widely proposed to cope with this 

problem. 

In this respect, there are multiple applications of 

geo-statistical methods available for the analysis 

of environmental attributes of soil in the previous 

studies. For instance, Lu et al. [5] used principal 

component analysis (PCA) and ordinary kriging to 

analyze the spatial distribution and origin of 

heavy metals in agricultural soils in Shunyi, 

Beijing, China, and concluded that soil 

contamination by Cd, Cu, and Zn was mainly 

derived from agricultural practices, whereas As 

and Pb were mainly due to soil parent materials, 

and Hg contamination was caused by the 

https://scholar.google.com/citations?view_op=view_org&hl=en&org=14428066424092604829
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atmospheric deposits. Guagliardi et al. [6] applied 

the multi-Gaussian approach to build the 

geochemical maps of heavy metals, and proved 

that high concentrations of potentially toxic 

elements were available in soils near major roads, 

indicating that the anthropogenic factors 

determine the anomalies in these areas. Lv et al. 

[7] utilized factorial kriging to study the spatial 

distribution of heavy metals in the soils of China, 

and showed that the spatial variation of Cr and Ni 

was related to the parent material at both the local 

and regional scales, and was derived from natural 

sources. Mining activity was observed to affect 

the spatial variation in Cd, Cu, Pb, and Zn at the 

local scale, while the parent material dominated 

the spatial variation of those metals at the regional 

scale. 

However, the downside of these techniques is that 

when multiple contaminants are considered, the 

correlation coefficients of the data are not taken 

into account in these methods. A practical 

alternative is to use multivariate methods (e.g.  

co-kriging) in order to analyze the relationship 

among the variables of interest [8] but these 

methods are computationally intensive since they 

involve modeling cross-variograms [9]. In 

addition, the linear model of co-regionalization 

(LMC) should be satisfied, meaning that the direct 

and cross variograms have to be a linear 

combination of basic structures [10], which is 

difficult to implement for a large number of 

variables [11]. 

In order to facilitate the analysis and modeling, 

de-correlation has been proposed, whereby the 

features are converted to new variables that are a 

linear combination of the original attributes. 

Multiple methods such as Principal Component 

Analysis [12], Stepwise Conditional 

Transformation (SCT) [13], Min/Max 

Autocorrelation Factors (MAF) [14], Independent 

Component Analysis (ICA) [15], and Uniformly 

Weighted Exhaustive Diagonalization with Gauss 

iterations (U-WEDGE) [16] have been utilized in 

this field. 

Among the above-mentioned methods, PCA and 

MAF are the most applied ones. PCA transforms 

the attributes to new orthogonal factors in a new 

space, where they are no longer correlated, 

thereby each new variable or factor can be treated 

independently, avoiding the LMC constrain [17]. 

However, only in cases in which there is an 

intrinsic correlation between the data, PCA does 

not guarantee de-correlation for a non-zero 

separation vector [18]. 

To the contrary, MAF, similar to PCA,  

de-correlates a set of variables into new 

uncorrelated factors. In this field, two techniques 

have been proposed in the literature to implement 

MAF. In the first one, known as model-based 

MAF [e.g. 19-20], the direct and cross-spatial 

continuity of attributes is modeled mainly through 

fitting a two-structure linear model of  

co-regionalization (2SLMC) [11, 21]. In the 

second approach, known as data-driven MAF [8, 

19], cross-correlation between the derived factors 

is removed for at least short lag distances. The 

latest method was first developed by Switzer and 

Green [23] and utilized later by other researchers 

in different fields of studies [e.g. 22, 24]. The 

redeeming feature of the data-driven method over 

the model-based technique is that 

orthagonalization of factors can be implemented 

without the need for fitting a LMC, hereby it is 

more computationally efficient [24]. 

In this respect, Shakiba et al. [21] applied MAF 

along with fuzzy logic on a set of seismic 

attributes. The study was concerned with the 

discrimination ability of these methods for fault 

and non-fault areas in oil and gas exploration 

sites. MAF was proved to be successful in 

dimensional reduction of seismic attributes and 

transformation of variables into un-correlated 

factors for all lag spacings. In a more relevant 

work to the current study, Lin et al. [16] combined 

Uniformly Weighted Exhaustive Diagonalization 

with Gauss iterations (U-WEDGE) along with 

Sequential Gaussian Simulation (SGS) to  

de-correlate a number of spatially correlated 

heavy metals and analyze the uncertainty in the 

distribution of these contaminants. The results of 

the uncertainties were used by the Info-Gap 

Decision Theory (IGDT) to propose remediation 

regimes for the contaminated area. As a whole, all 

the applied methods in the latest research works 

were successful in the implementation of the 

objectives of the study. 

The main objectives of the current research work 

were (i) to consider the applicability of min/max 

autocorrelation factor to de-correlate some cross-

correlated trace elements in the soil samples of 

Shahrood and Damghan in the central part of Iran 

(ii) to assess the reproduction of the original data 

from simulated MAFs.Min/max autocorrelation 

factor followed by Sequential Gaussian 

Simulation To our knowledge, it is it is the first 

application for the assessment of a contaminated 

area. 

 



Sakizadeh et al./ Journal of Mining & Environment, Vol.8, No.3, 2017 

 

375 

 

2. Materials and methods 

2.1. De-correlation using min/max  

auto-correlation factor 

Let        1 2  , ,   ,    KZ u Z u Z u Z u be a 

stationary and ergodic random field (RF) over a 

region D, representing K correlated heavy metals 

measured on soil samples in the studied area. The 

associated variogram matrices of the foregoing 

spatial samples can be represented by [8]: 

 

         

Γ

1
Ε Ζ Ζ . Ζ Ζ
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

    
 

z

T

h

u h u u h u
 (1) 

Since the variogram matrix depends only on the 

lad distance of the sampling points, at large lag 

distances (e.g. h ), the variogram matrix 

approaches the variance-covariance matrix (e.g.

 Γ z h B ), in which B is the variance-covariance 

matrix at zero lag distance. Now consider the 

normal score transformation of the above random 

field, 
     
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1

1 1

  ,   ,  

,   ,  

    

 
  

K

K K

Y u Y u Y u

f Z u f Z u
, which is 

multi-Gaussian with zero mean and unit variance. 

If there is a spatial auto-correlation among the 

attributes, the variables can be converted to 

orthogonal, independent factors called min/max 

autocorrelation factors (MAFs) (Equation 2) that 

can be simulated independently using the 

univariate geo-statistical methods followed by 

back-transformation of the results to the data 

space by the related back-transformation matrix 

[23]. 

   T

MAFM u A Y u  (2) 

where A is the transformation matrix for which 

the coefficients are obtained through: 

1
T T T2

2 1 1A Q Λ Q


  (3) 

In Equation (3),    and    are the matrices of the 

eigenvectors and eigenvalues derived by the 

spectral decomposition of the variance-covariance 

matrix (e.g. B). Matrix    is obtained through the 

following equation: 

 
PCA

T

2 2 P 2Λ Q Γ Δ Q  (4) 

in which      ( ) is the experimental variogram 

matrix at a short lag distance (e.g. lag  ) for PCA 

factors calculated from: 

   
1

T2
PCA 1 1P u Λ Q Y u



  (5) 

Obtaining a reliable value for the experimental 

variogram at a short lag distance is not an easy 

task to implement. A practical approach is to test 

different delta values and select the one that 

provides the best de-correlation stable 

decomposition results for factors [24]. 

Considering the de-correlation of the original 

cross-correlated attributes, the whole procedure 

for simulation of correlated variables using data-

driven MAF, as explained by Dimitrakopoulos 

and Fonseca [24], is as follows: 

1. Normalize input attributes to variables with 

zero mean and unit variance (e.g. normal score 

transformation); 

2. Transform normalized attributes to new  

de-correlated variables using data-driven MAF; 

3. Convert each factor to Gaussian variables; 

4. Calculate the experimental variograms and fit 

variogram models for each factor in normal score 

space; 

5. Simulate each normalized factor independently 

conditional to the data values; 

6. Back-transform the simulated variables into 

MAF space and validate the simulation results; 

7. Back-transform the simulated MAF to data 

space and validate the results; 

A visual assessment of cross-semi-variograms of 

each MAF was used as a criterion to detect any 

remnant correlation among factors. Perfect  

de-correlation is obtained when all of the MAFs 

are around zero for all lag distances [25]. 

2.2. Field and laboratory analysis 

Located in an arid zone, the studied region, with 

an area of 4416 Km
2
, is one of the driest provinces 

of Iran with a long-term average annual 

precipitation of about 152 mm [26]. This region is 

bordered by KavirNamak, in which Shahrood and 

Damghan are the main capital cities with 

populations of over 200,000 and 57000 people, 

respectively. The main source of water is 

groundwater, which is abstracted through wells 

and Qanats (some ancient underground tunnels for 

extraction of water in dry parts of Iran). In this 

field, the average annual groundwater 

consumption in Shahrood, for instance, was about 

545 million cubic meters [27]. Heavy metal 

pollution of soil has been attributed to the 

prevalent mining activities and geological 

formations in the previous research works [e.g. 

28-29]. For example, the mean values for Co, Cr, 

Mn, and Ni in the soil samples considered by 

HajizadehNamaghi et al. [29] were 58.78, 1025.8, 

903.7, and 902.3 mg/kg in the studid area, 

respectively. Mining activity is common in the 
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region [30], and there are many active and 

abandoned mines by which heavy metals are 

dispersed through disposal of mine tailings. The 

location of some of these mines has been given in 

Figure 1. Due to these activities, most of the soils 

in the area are contaminated by heavy metals, 

resulting in their subsequent transfer to plants and 

groundwater resources [31-32]. 

 

 

 
Figure 1. An illustrated map of studied area (above) and a DEM map of region (below). In highlighted region in 

map of studied area, agricultural activity is prevalent. 

 

For field sampling, a systematic random approach 

[33] was followed, through which 170 soil 

samples were taken from upper 10 cm of soil. In 

laboratory, collected soil samples were air-dried 

and sieved through a 2-mm stainless steel mesh to 

remove stones and plant roots. Following 

digestion of soil samples with nitric acid (HNO3) 

and hydrochloric acid (HCl) in a ratio of 3:1 

(HNO3:HCl), total concentrations of trace 

elements including Co, Pb, Ni, Cs, Cu, Mn, Sr, V, 

Zn, Cr, and Tl were analyzed by inductively 

coupled plasma-optical emission spectroscopy 

(ICP-OES). 

2.3. Simulation of heavy metals 

The attributes to be simulated should comply with 

the multi-Gaussian assumption. According to this 

assumption, the distribution of any value Y(x) 

conditioned by sampled values is still Gaussian, 

which is known as Gaussian anamorphosis [34]. 

In this respect, the attribute under study is viewed 

as a realization of a random function Z(x) that can 

be transformed into a Gaussian random field Y(x) 

with zero mean and unit variance: 

   Z x Y x     (6) 

A raw variable can be converted to a Gaussian 

variable using the inverse of Gaussian 

anamorphosis function, as follows: 

   1Y x Z x     (7) 
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In this research work, Gaussian anamorphosis 

functions were applied to transform all the 

attributes to Gaussian variables before simulation. 

2.4. Dimensionality reduction by principal 

component analysis 

The distribution and spatial continuity of Co, Pb, 

Ni, Cs, Cu, Mn, Sr, V, Zn, Cr, and Tl were 

observed through exploratory data analysis and 

calculation of experimental variograms, 

respectively. The diversity of data distribution and 

spatial continuity were factors that could have 

made the MAF transformation and the subsequent 

simulation of all of these variables impractical. 

Therefore, it was decided to reduce the number of 

data through principal component analysis (PCA). 

It has been used earlier by researchers for variable 

selection [e.g. 35-36]. PCA based on factor 

analysis was applied on the normal score 

transformed variables since this method is more 

robust when the variables follow a Gaussian 

distribution [25]. 

2.5. MAF transformation and variography of 

MAF 

Due to the fact that the data had been sampled 

preferentially in some parts of the studied area 

(Figure 1), it was first de-clustered using a 

moving window of 2500 × 2500 m. Experimental 

variograms were worked out for each six heavy 

metals (Co, Ni, Cu, Mn, V, and Cr) retained by 

PCA (refer to section 3.1). The variation in lag 

sizes and number of lags was based on the general 

rule of thumb that the product of lag size and 

number of lags should be less than one half of the 

largest distance between the data pairs [37]. 

Accordingly, the value of 2560 m was selected for 

the lag size with 10 numbers of lags. To consider 

the possible anisotropy (geometric or zonal) in 

spatial pattern of the attributes, the calculation of 

variograms was done in four main directions (e.g. 

0, 45, 90, and 135˚) to assess if the spatial 

variability is the same in all directions [6]. If it is, 

the distribution is called isotropic; otherwise, it is 

anisotropic. An example of these calculated 

variograms is illustrated in Figure 2 for 

manganese. In this respect, no single direction of 

greatest continuity was observed given the results 

of directional variograms, and so isotropy was 

assumed. The variogram plot was then fitted with 

a theoretical model for which the best fitting 

model was selected based on two-fold  

cross-validation. For this purpose, 70% of the 

sampling points were used as the training set and 

the rest as the test set. The criteria for the 

selection of a model were according to the root 

mean squared error (RMSE) and root mean square 

standardized error (RMSSE) of the test set that 

should be as low as possible and near one for a 

suitable model, respectively. Also the plot of 

measured and observed values of the test data was 

another goodness of the fit criterion. The 

validation plot of manages, as an example, is 

given in Figure 3. 

The transformation matrix (Equation 3) was used 

to convert six normal attributes to six MAFs. 

Derivation of MAFs was implemented using a 

distance of 1500 m and tolerance on distance of 

250 m for de-correlation at short lags (e.g. delta 

value), selected based on the criterion explained 

earlier. 

Variography on each MAF was then performed 

independently and the models were fitted to each 

experimental variogram. Since normal distribution 

is required for geo-statistical simulation, 

distribution of MAFs was reconsidered and the 

required normal transformation was used in case 

of necessity. 

A simulation grid with a 1000 m × 1000 m 

dimension was then superimposed on normal 

score transformed MAFs before simulation of 

factors. 

2.6. Conditional sequential Gaussian 

simulation of MAF 

There are multiple conditional simulation methods 

available in the literature. However, the most 

applied ones are Turning Bands [38] and 

Sequential Gaussian Simulation (SGS) [39]. 

Turning bands algorithm was once used to be 

popular but due to its disadvantages, it is now less 

popular among researchers [40]. SGS, in contrast, 

is more efficient and widely used [41]. The details 

of the latest method can be found in other 

published literatures [37]. In short, in this 

technique, a random path is defined through all 

the grid nodes containing the conditional data that 

comprise the original data and the previously 

simulated values within the defined neighborhood 

of the simulated point. Simple kriging (most 

commonly) will then be used to obtain a local 

conditional distribution. A value is then drawn 

randomly from normal distribution and added to 

the nodes in random path. This process is 

continued by simulation of the next node and so 

on [10]. Twenty simulations, within a 

neighborhood circle of 10000 m radius, were 

generated in this study for each simulated heavy 

metal, and validated for reproduction of 

variogram of data in MAF space. It should be 
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noted, despite kriging methods, that in these kinds 

of simulations, no cross-validation is performed 

on the results of simulations because honoring the 

data values results in a mean prediction error of 

zero. 

The realizations of MAF were then transformed 

back to normal score space by multiplying a 

column vector of simulated MAF in each grid 

node with the corresponding inverse matrix of the 

MAF loadings [24], and finally, the results were 

transformed to data space, respectively. 

Validation of the results of simulations was done 

according to the comparison of the histogram and 

experimental semi-variogam of simulation 

realizations with that of original data to ensure 

reproduction of the spatial pattern characteristics 

[42]. In addition, reproduction of the variogram of 

the simulated MAFs in normal score space and 

comparison of the distribution of simulated MAFs 

versus original MAFs through quantile-

quantileplots (QQ plots) were also applied for the 

validation of the results. 

 

 
Figure 2. Directional variogram of Mn in four main directions (e.g. 0, 45, 90, and 135˚). 
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Figure 3. Validation plot of variogram model for Mn. Produced RMSE and RMSSE values for applied model 

were 185 and 0.99, respectively. 

 

3. Results and discussion 

3.1. Dimensionality reduction 

The descriptive statistics related to the analyzed 

elements along with the standard levels for some 

HMs as well as the number of samples exceeding 

the cut-off values are rendered in Table 1. 

Each HM was first normally transformed by the 

Gaussian anamorphosis modeling with respect to 

the de-clustered weight, resulting in normal score 

values. The theoretical mean and variance of the 

actual values were compared with that of the 

transformed data to optimize the number of 

polynomials used in each Gaussian 

transformation. In this respect, high  

cross-correlation among some HMs and poor 

spatial correlation among others could have made 

spectral decomposition of MAFs unstable, 

resulting in some negative eigenvalues [11]. Thus 

it was decided to reduce the dimensionality of the 

original variables. For this purpose, a factor 

analysis along with principal component 

extraction and Quartimax rotation method (since it 

resulted in the best rotation of components 

compared with that of other algorithms) were 

applied on the normal score factors. The resultant 

Kaiser–Meyer–Olkin (KMO) test was 0.744, 

implying the suitability of the factors, considering 

the proposed cut-off value of 0.5 [43]. Moreover, 

the generated Chi-square distribution (  ) of 

Bartlett’s Test of Sphericity was high (1200) and 

significant, showing the existence of a common 

factor between relevant matrices of the parent 

population [43]. As a whole, three rotated 

components accounting for 72.02% of the total 

variance of data were retained based on the 

criterion of eigenvalues greater than one [44]. The 

respective eigenvalues of these three components 

were 4.19, 1.61, and 1.06, while they 

encompassed 38.06, 14.63, and 9.63 percents of 

the total variance, respectively. The results of the 

final rotated component matrix are presented in 

Table 2. 

Considering this table, the importance of each 

attribute to factors, independent of the other 

variables, can be considered using factor loadings 

[25]. Since most of the variabilities of Co, Ni, Cu, 

Mn, V, and Cr can be explained by factor 1 while 

other HMs are explained by other factors, these 

variables were assigned to an independent group 

and retained for further spatial analysis. The 

correlation coefficients between the original 

reduced variables (upper diagonal) versus those of 

normal score attributes (lower diagonal) are given 

in Table 3. 

Since the normal score transformation is  

non-linear, the cross-correlation among attributes 

may not be exactly reproduced [22]. This 

transformation is performed based on the 

association of the quantiles of each HM with that 

of standard normal distribution [42]. It should be 

noted that due to the non-linearity aspect of this 

transformation, it does not have any impact on the 
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subsequent MAF transformation [11]. Some 

researchers [22] believe that if the correlation 

coefficients of element before and after 

normalization are not significantly influenced, 

their correlation are better projected out in the 

final results of simulations. The results obtained 

show that the greatest fluctuations in the amount 

of correlation coefficients before and after normal 

score transformation are related to Cu-Mn (from 

0.21 to 0.42), Cu-V (from 0.49 to 0.67), and  

Mn-Ni (from 0.37 to 0.57). There have also been 

some other changes; however, they are at the 

same order of magnitude. In cases in which the 

correlation coefficients have been significantly 

influenced, the direct method of MAFs [18] can 

be utilized but in this study, it is not a big issue. 

Histograms of original data next to those of 

transformed attributes are depicted in Figures 4 

and 5, respectively. 

These histograms were created using de-clustering 

weights. Given these histograms, some variables 

(e.g. Co, Mn, Cu) are positively skewed and the 

others are far from normal distribution (Figure 4). 

The transformed variables, on the other hand, all 

have roughly a mean of zero and St. dev. of one, 

showing a quite standard normal distribution. 
 

Table1. Descriptive statistics, standard levels, and number of samples exceeding cut-off values for analyzed 

samples. 

Heavy metals Min Max Average SD Standard level Reference 
Number exceeding 

threshold 

Co 2.53 25.24 10.34 3.15 40 IS  

Pb 5.22 87.74 18.60 9.24 50 IS 2(1.4%) 

Ni 11.50 55.81 32.57 7.48 50 IS 4(2.4%) 

Cs 1.40 10.47 5.91 1.30    

Cu 6.99 85.22 23.84 10.12 100 IS  

Mn 138.00 1716.21 585.84 159.45 600 USEPA,1983 57(33.5%) 

Sr 116.22 970.56 379.11 119.39    

V 22.55 160.96 78.44 20.28 100 IS 21(12.4%) 

Zn 14.07 210.49 77.65 28.56 200 IS 2(1.4%) 

Cr 27.50 179.79 84.17 22.89 110 IS 18(10.6%) 

Tl 0.00 2.16 0.82 0.36 5 IS  

Is: Iranian soil standards. 

 

Table 2. Rotated components matrix of normal score variables. Ana prefix indicates application of anamorphosis 

function. High loading values are highlighted using bold fonts. 

Normal score variables 1 2 3 

Ana_Co .933 .118 -.126 

Ana_Pb .214 .960 -.058 

Ana_Ni .830 .045 .005 

Ana_Cs .421 -.086 .032 

Ana_Cu .601 .312 .135 

Ana_Mn .662 .150 .059 

Ana_Sr .016 -.022 .996 

Ana_V .954 .075 .048 

Ana_Zn .382 .722 .069 

Ana_Cr .592 .015 .127 

Ana_Tl .444 .136 -.051 

 
Table 3. Correlation coefficients between original variables (upper diagonal) and normal score variables (lower 

diagonal). 

 Co Ni Cu Mn V Cr 

Co 1 0.65 0.39 0.63 0.89 0.43 

Ni 0.73 1 0.46 0.37 0.69 0.72 

Cu 0.51 0.59 1 0.21 0.49 0.28 

Mn 0.66 0.57 0.42 1 0.61 0.28 

V 0.87 0.73 0.67 0.67 1 0.53 

Cr 0.52 0.71 0.39 0.42 0.58 1 
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Figure 4. Histograms of original heavy metals. 

 

 
Figure 5. Histograms of normal score variables. 

 

3.2. Spatial relationships using variograms 

The experimental variograms were calculated for 

each retained attribute to identify the degree of 

spatial continuity of each HM and establish the 

range of spatial dependence. The variograms were 

all fitted to spherical models other than Co and Cr, 

for which, cubic and exponential models were 

better fitted. The parameters related to the fitted 

semi-variogram models can be found in Table 4, 

whereas the fitted models are illustrated in Figure 

6 as well. 
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Table 4. Parameters of variogram models for each HM. 
Heavy metals Variogram model C0 (mg/kg)

2
 C+C0 (mg/kg)

2
 C0/C+C0 Range(km) 

Co Cubic 2.82 16.36 0.17 54.84 

Cr Exponential 173.20 499.80 0.35 23.71 

Cu Spherical 15.92 137.20 0.12 13.66 

Mn Spherical 700.00 34900 0.02 7.19 

Ni Spherical 16.82 48.74 0.35 15.88 

V Spherical 78.54 499.90 0.16 29.85 

C0: Nugget variance 

C+C0: Sill 

C: Structural variance 
 

  

  

  

Figure 6. Variogram models fitted to each semi-variogram. 

 

In Table 4, the nugget effect (C0) indicates the 

semi-variance value found at the intercept with 

the y-axis that should be zero for a perfect model. 

However, a large nugget effect can occur due to 

sampling error or spatial dependence at finer 

spatial scales than the sampling resolution [45]. In 

fact, a variable with no spatial dependence would 

have a variogram that is a pure nugget. Referring 

to this table, it is clear that Mn and Cr had high 

nugget values of 700 and 173.20 (mg/kg)
2
, 

implying that the sampling method followed was 

not intensive enough to cover a very high  
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micro-scale variability of these elements, and 

possibly, more samples should have been 

collected in the field. The lowest recorded nugget 

values were related to Co and Cu with levels of 

2.82 and 15.92 (mg/kg)
2
,
 

showing that the 

sampling method has successfully covered the 

spatial dependence of these trace elements 

compared with that of the other metals. 

The spatial dependence of Soil HMs can be 

classified using the criterion of sill/nugget [46]. In 

this respect, attributes with strong spatial 

dependence have a ratio less than 25%, whereas 

for attributes in which the spatial dependence is 

moderate, this range fluctuates between 25% and 

75% and those greater than 75% belong to 

attributes with weak spatial dependence [47-48]. 

As a whole, both intrinsic factors (e.g. soil 

formation factors and parent materials) and 

extrinsic factors (e.g. anthropogenic sources such 

as agricultural or industrial activities) may affect 

the spatial variability of soil properties. 

Meanwhile, strong spatial dependence can be 

originated from intrinsic factors, while weak 

spatial dependence can be attributed to extrinsic 

factors [49]. Referring to Table 3, it can be 

concluded that except for Cr and Ni, which can be 

categorized in the moderate spatial class (both 

have a nugget/sill ratio of 35%), the spatial 

dependence of other HMs is strong. In other 

words, the sources of Cr and Ni have partially 

emanated from parent material but the 

anthropogenic source has also played a role in this 

field. In this field, the high correlation coefficients 

between Cr and Ni (Table3) corroborate the fact 

that they have the same origin. Lilli et al. [50] and 

Cai et al. [51] reached the same conclusion and 

found a similar source for Cr and Ni on their 

studies about soils of Asopos Basin in Greece and 

Shunde in Southeast China, respectively. 

Although in this work the range value for Cr 

(23.71 km) was higher than that for Ni (15.88 

km), meaning that the variability of chromium 

was spatially correlated over a larger range than 

nickel. This may suggest that extrinsic factors 

(such as mining and agricultural activities in the 

area) might have weakened the spatial correlation 

of Ni in some parts of the region. Considering 

other HMs, the condition for Co and V is the same 

(e.g. they have roughly similar nugget to sill 

ratios) but the range value of cobalt is roughly 

twice that of vanadium. It implies that geogenic 

sources (e.g. geological formations and soil 

properties) have contributed to the distribution of 

these HMs in the soils of the studied area. Natural 

sources (soil texture and pedogenesis) have been 

found to be the main contributors of Co in soil in 

some earlier studies as well [52]. 

Among the considered HMs, Mn had the strongest 

spatial dependence (nugget to sill ratio of 0.02) 

and the lowest range (7.19km) followed by 

Cu((C0)/(C+C0) = 0.12 and range of 13.66 km), 

indicating that they can be attributed solely to 

geogenic sources. With respect to trace elements 

in the lithosphere, manganese is one of the most 

abundant ones. Since Mn is mainly accumulated 

in the top horizons of soil as a result of its fixation 

by organic matter [53], its subsequent transport in 

the lithosphere may be limited, resulting in its 

accumulation next to the source of production. 

This may partly justify the strong spatial 

dependence and low range of this element. 

3.3. Data-Driven MAF 

After testing different separation distances of ∆, 

based on the average distance among sampling 

points in the field, a value of 1500 m was selected 

for ∆ as it assured a suitable de-correlation of 

factors and stable decomposition of MAF [24]. 

The variance-covariance matrix of data at zero lag 

distance (e.g. 
T

1 1 1B Q Λ Q ) was obtained as: 

 
1 0.519 0.509 0.664 0.734 0.870

0.519 1 0.395 0.423 0.713 0.585

0.509 0.395 1 0.425 0.592 0.672
B

0.664 0.423 0.425 1 0.571 0.670

0.734 0.713 0.592 0.571 1 0.735

0.870 0.585 0.572 0.670 0.735 1

 
 
 
 

  
 
 
 
 
 

 

 

The spectral decomposition of the above matrix 

makes eigenvectors (Q1) and eigenvalues (  ) of 

B as follows: 

 

1

0.440 0.215 0.141 0.624 0.535 0.063

0.365 0.775 0.323 0.188 0.192 0.411

0.360 0.220 0.899 0.244 0.296 0.064
Q

0.380 0.447 0.251 0.009 0.663 0.043

0.442 0.287 0.008 0.291 0.019 0.820

0.453 0.149 0.070 0.656 0.388 0.387





 

 


   

 








 
 
 



 

 

1

4.047 0 0 0 0 0

0 0.652 0 0 0 0

0 0 0.602 0 0 0

0 0 0 0.109 0 0

0 0 0 0 0.367 0

0 0 0 0 0 0.22

Λ

4

 
 
 
 

  
 
 
 
 
 

 

 

The associated transformation matrix (A) is used 

to convert six HMs to their respective min/max 

autocorrelation factors: 
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0.914 1.216 1.160 0.607 0.924 0521

0.497 0.027 1.320 0.137 0.274 0.306

0.173 0.186 0.261 0.110 0.856 1.114
A

0.143 1.158 0.188 0.720 0.114 0.023

0.990 0.298 1.393 0.713 0.040 0.397

0.362 0.389 1.115 1.081 1.942 0.194

 

   

  


   



  


 
 
 
 
 
 
 
 



 

 

Experimental cross-variograms between MAFs (in 

supplementary material) indicated that MAFs 

have been rigorously de-correlated and the 

maximum cross-variogram values in most of the 

plots is around 0.1. However, values up to 0.3 

have also been observed at longer lag distances. 

This small amount of remnant correlation may be 

due to the different number of pairs used to 

calculate variograms in MAF transformation 

matrix [11], as it can be observed in Figure 6. 

In the majority of plots, MAFs have become 

completely de-correlated at short lags and around 

the separation distance of ∆. Although the  

de-correlation step was satisfactory, MAFs did not 

follow the standard normal assumption required 

by SGS. Therefore, a second normal score 

transformation was performed on MAFs to 

convert MAFs to normal score values with 

standard normal distribution, and then the 

variogram models were fitted to each normal 

score transformed MAF followed by simulation of 

the resultant factors by SGS. The applied isotropic 

models consisted of a nugget structure and a 

spherical structure. Twenty realizations of MAFs 

were generated in normal score space, which then 

back-transformed to MAF space. There were 

some validation checks to examine the quality of 

SGS [43]. Given in Figure 7, the cumulative 

variograms of 20 simulated realizations in normal 

score space overlaid with the respective fitted 

variogram models of MAFs for each factor, 

separately. As a whole, the variograms have all 

been well reproduced but it seems as if the best 

results have been obtained for factor#5 and 

factor#6 as the fitted variograms are close to the 

mean of realizations. 

Referring to other variograms, the mean of 

realizations have roughly underestimated the 

fitted variogram. However, the predictions are 

reasonable anyhow. The other validation check 

consisted of comparing the distribution of the first 

realization in the simulated MAFs (in MAF space) 

versus the distribution of the original MAF by q-q 

plots. Q-Q plots in geo-statistics are generated by 

dividing a population into equal numbers of 

values and averaging the values inside each bin. 

In case of matching the quantile values of two 

populations, the distribution of points lays along 

the bisector (e.g. X=Y) line. The close match of 

these two distributions confirms the success of 

simulations too (Figure 8). The minor upward 

deviation of some factors (such as Factor#1 and 

Factor#5) from the line of unit slop can be 

attributed to the back-transformation process from 

normal score to MAF space. 
The realizations of MAF generated during SGS 

were back-transformed to normal score variables 

by multiplying columns of MAF with the inverse 

matrix of transformation matrix (A). The normal 

score variables were then transformed to data 

space to produce Co, Cr, Cu, Mn, Ni, and V from 

the related factors. There were some validations to 

examine the quality of back-transformation of 

HMs at this stage of SGS. The first test was 

reproduction of the descriptive statistics 

(including min, max, mean, standard deviation) 

and histogram of the original attributes from 

simulated values. For each variable, a realization 

was selected randomly out of 20 simulated 

realizations [55]. The respective minimum and 

maximum values of original data were reproduced 

well (Figure 9) but except for Ni in which the 

mean value of original nickel has been slightly 

overestimated, the mean and st. dev. of other HMs 

a little exceeded that of simulated values. The 

histograms of the simulated HMs have also 

roughly followed those of the original variables as 

well. 

Reproduction of the target variograms was 

considered by comparison of the experimental 

variogram of simulated attribute against that of 

original HM (Figure10). With respect to this 

Figure, the variograms of simulated values have 

not been exactly reproduced, and there are some 

underestimation in variogram reproduction but the 

spatial continuity of original attributes have been 

captured all in all. This may be due to the fact 

that, in this work, soil samples have been 

preferentially taken in some parts of the studied 

region (e.g. mainly clustered in the agricultural 

land use), thus complicating the exact honoring of 

spatial variability of attributes. In addition, back-

transformation from MAFs to normal score and its 

subsequent conversion to original values might 

have also contributed in this respect. To sum up, 

considering the simulation results, the common 

smoothing problem of kriging methods resulting 

in overestimation of small values and 

underestimation of large values [55] have been 

obviated through this method. 
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Figure 7. Variogram models of 20 simulated MAFs overlaid with original MAF model in normal score space. 

(Highlighted red variogram is target variogram and thin red variogram is mean of realizations). 

 

  
Figure 8. Q-Q plot of simulated MAF against original MAF in MAF space. 
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Figure 8. Continued. 

 

 
 

  
Figure 9. Histogram of simulated values reproduced from SGS along with MAF de-correlation. 
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Figure 9. Continued. 

 

 

 

 

 

 
 

Figure 10. Reproduction of experimental variograms from a simulated realization selected at random. 
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Finally, the uncertainty in simulation results was 

estimated through considering 3 out of 20 

produced realizations of chromium picked 

randomly (as an example) (Figure11). Given the 

simulation maps, there are some uncertainties 

associated with the predications at high values of 

chromium. However, these uncertainties are not at 

a level to influence the whole area, and the 

simulation maps are acceptable as a whole. 

The de-correlation method used in the current 

research work is simpler and more 

computationally efficient than its equivalent 

sequential Gaussian co-simulation as fitting a 

linear model of coregionalization (LMC), to 

account for the correlation coefficients among 

attributes, is not required in the data-driven MAF 

method. This note has been emphasized in similar 

research works in different fields of studies [54]. 

Therefore, this method can be applied by other 

researchers for production of simulation maps of a 

contaminated area, while working with multiple 

cross-correlated pollutants. 

 

 
 

 
Figure 11. Uncetainty in simulation results of Cr constructed from multiple realizations. 

 

4. Conclusions 

Co-simulation of cross-correlated attributes (e.g. 

in an area in which multiple soil contaminants 

have been collected) is not an easy task to 

implement. De-correlation methods have been 

proposed to handle this kind of data while 

simulating a high number of correlated data 

records. In this research work, a method known as 

min/max autocorrelation factors (MAFs) was 

applied to de-correlate six HMs, selected out of 

eleven elements, followed by their subsequent 

simulation independently using SGS. Despite 

PCA, this technique assures de-correlation at zero 

lag as well as ∆ lag distance. Due to de-correlation 

of factors, they can be simulated independently, 

and so it is less computationally intensive 

compared with its co-simulation counterpart. The 

validation of simulation results also confirmed 

that not only data values are honored but also 

spatial continuity of attributes was reproduced in 

this research work. All in all, this method was 

successful, and reached the objective of this study. 

The generated simulation results through different 

realizations facilitate the uncertainty and spatial 

risk assessment of the contaminated area. 
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 چکیده:

معدنکاوی در جریان استت برداشتت    یها تیفعال آن دردر یک منطقه خشک در شاهرود و دامغان که  یبردار نمونهایستگاه  621خاک از  یها نمونهدر این تحقیق، 

در هتر ایستتگاه تبتت شتد. روش جدیتدی تحتت عنتوان         ومیتتال  و کتروم  ،یرو ،ومیوانتاد  ،ومیاسترانست  ،منگنز ،مس ،میسز ،کلین ،سرب . مقادیر فلزات کبالت،شد

زدایی از عناصر پیش از اعمال تکنیتک زمتین متورد استت اده     جهت همبستگی محیطی زیستفاکتورهای خودهمبستگی بیشینه/کمینه برای اولین بار در تحقیقات 

لتذا   ؛در به تولیتد مقتادیر ویتژه من تی گترد     منج توانست میسو و همبستگی مکانی ضعیف بین برخی دیگر  قرار گرفت. همبستگی بالای بین برخی از عناصر از یک

 ،میوانتاد  ،متس  ،منگنتز  اساس، شش فلز سنگین )کتروم،  بر ایناصلی کاهش داده شود.  های مؤل هروش آنالیز  وسیله به تصمیم گرفته شد که ابعاد متغیرهای اولیه 

جداگانه صتورت   صورت  بهیک از فلزات  هر یرو برتوسط روش متوالی گوس  سازی شبیههای بیشینه/کمینه مربوطه تبدیل و به دنبال آن ( به فاکتورکبالتو  کلین

در فاصله ص ر و فاصتله دلتتا بتین متغیرهتا از      ویژه به های فاکتورهای تولیدی شده حاکی از این بود که همبستگی متقاطع بین فاکتورها پذیرفت. بررسی واریوگرام

 شتده،  ستازی  شبیهها در فضای داده و فضای نرمال، همخوانی بین فاکتورهای اولیه و فاکتورهای متعدد از جمله بازتولید واریوگرام یها یسنجبین رفته است. اعتبار

کتار  ه همگی حاکی از موفقیت این روش داشت. نتایج ایتن تحقیتق نشتان داد کته روش بت      اولیه یها دادهو هیستوگرام  ها دادهآمارهای توصی ی مربوط به  دیبازتول

و به لحتا  محاستباتی آستان     تر ساده. از این گذشته، است اده از این روش است ها آنواریوگرام( ) یمکانو پیوستگی  ها داده زیآم تیموفقگرفته شده قادر به بازتولید 

 است. یا هیناحعدم نیاز به برازش مدل خطی هم  لیدل بهکه  استمتناوب گوس  سازی شبیهاز روش معادل آن یعنی روش هم تر

 .فاکتورهای خودهمبستگی بیشینه/کمینه زمین آمار، سازی هیشب همبستگی زدایی، کلمات کلیدی:

 

 

 

 

 

 

 


