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Abstract 
Predicting the wear performance of circular diamond saw in the process of sawing hard 
dimensional stone is an important step in reducing production costs in the stone sawing 
industry. In the present research work, the effective parameters on circular diamond saw 
wear are defined, and then the weight of each parameter is determined through adopting 
a fuzzy rock engineering system (Fuzzy RES) based on defining an accurate Gaussian 
pattern in fuzzy logic with analogous weighting. After this step, genetic algorithm (GA) 
is used to determine the levels of the four major variables and the amounts of the saw 
wear (output parameter) in the classification operation based on the fixed, dissimilar, 
and logarithmic spanning methods. Finally, a mathematical relationship is suggested for 
evaluation of the accuracy of the proposed models. The main contribution of our method 
is the novelty of combination of these methods in fuzzy RES. Before this work, all 
Fuzzy RESs only use simple membership functions and uniform spanning. Using GA 
for spanning and normal distribution as membership function based upon our latest work 
is the first work in fuzzy RES. To verify the selected proposed model, rock mechanics 
tests are conducted on nine hard stone samples, and the diamond saw wear is measured 
and compared with the proposed model. According to the results obtained, the proposed 
model exhibits acceptable capabilities in predicting the circular diamond saw wear. 

1. Introduction 
In excavation and sawing operations, the feature 
of the stone that scrapes away the auger head is 
called abrasiveness [1]. Abrasiveness is one of the 
most effective parameters in stone sawability. 
Having a clear measure of this parameter plays a 
significant role in selecting the cutter tool in mine 
excavations as well as in cutting building stone 
operations [2]. Recognizing the characteristics of 
stones and investigation of the operational 
parameters specified for the cutting machines 
provide building stone production industry 
planners with a more facilitated cruise towards 
improving the processing speed and production 

enhancement. Therefore, in order to achieve an 
appropriate design in stone processing factories, 
predicting the diamond saw wear is what deemed 
to be necessary. Studies indicate that with increase 
in the uniaxial compressive strength, hardness, 
and stone abrasiveness, the excavation capability 
and stone sawability suffer a decline. The studies 
carried out in this section include offering a 
classified system accompanied by statistical 
relations [3-5]. Table 1 presents the most 
important research works that have been 
undertaken in the field of stone sawability and 
diamond saw wear. 
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Table 1. Most important studies carried out in process of rock sawability and wear performance of circular 
diamond saw. 

Researcher Features Investigated 

Birle & Ratterman, 1986 [6] Offering a classification system based on laboratory studies for predicting saw 
wear performance in hard stones. 

Pai, 1987, [7] Offering a classification system based on saw wear performance and energy 
consumption. 

Jening et al., 1989, [8] 
Investigating the factors effective on diamond disc performance, cutting ability 
and the saw useful life relationship with the abrasiveness and hardness 
parameters. 

Tonshoff et al., 2002, [9] Investigating the factors effective in diamond tool wear (thermal and mechanical 
loads, tool characteristics, work piece and machining factors). 

Konstanty, 2002, [10] Analyzing the stone cutting according to the diamond tool performance. 

Eyuboglu et al., 2003, [11] Investigating the effect of stone parameters on saws wear in the process of 
Andesite stones cutting. 

Engels, 2003, [12] The effect of operational and instrument specifications on cutting rate and chip 
thickness in granite. 

Kahraman et al., 2004, [13] Surveying the relationship between the stone mechanical properties and cutting 
machine operational parameters. 

Ersoy & Atici, 2005, [14] The effect of various operational conditions on the behavior of the stone cutting 
saws. 

Ersoy et al., 2005, [15] Surveying the effect of diamond tool wear in hard stones. 

Fener et al., 2007, [16] Diamond discs performance in cutting carbonated stones according to the 
mechanical properties. 

Buyuksagis, 2007, [17] The effect of cutting methods on the wear of the diamond saw in the process of 
cutting granite. 

Ozcelic, 2007, [18] The effect of stone texture features on wear rate in the process of cutting 
carbonated stones. 

Amaral et al., 2009, [19] Surveying the diamond segment wear mechanism in the process of cutting 
granite stones. 

Mikaeil et al., 2011, [20] Developing a classification system for the prediction of carbonated stones cutting 
ability. 

Yilmaz et al, 2011, [21] Investigating the effect of stones physical and mechanical properties on diamond 
segment wear. 

Turchetta, 2012, [22] The effect of cutting conditions on cutting force and cutting energy and their 
relationships with the diamond segment wear. 

Ataei et al., 2012, [23] Offering a novel classification system for the evaluation of carbonated stones 
cutting ability. 

Aydin et al., 2013, [24] Offering a model for predicting the diamond saws wear rate in granite. 

Karakurt, 2014, [25] Optimizing the cutting forces in the process of cutting with diamond discs by the 
help of Taguchi method. 

Mikaeil, et al., 2015, [26] Developing the stones cutting predictability based on PROMETHEE method. 

Mikaeil, et al., 2016, [27] Predicting the cutting machine performance by exploitation competition 
algorithm and fuzzy clustering method. 

Almasi et al., 2017a, [28] Predicting the dimensional stones cutting rate based on stone characteristics and 
the intensity of the consumed energy by the use of tree model. 

Almasi et al., 2017b, [29] Developing a novel classification system based on abrasion, hardness and 
toughness for the prediction of hard stones cutting ability. 

 
The substantial problem of the prior studies has 
been the adoption of separate measures for 
evaluating the effective parameters influencing 
the stone sawing speed and diamond segment 
wear. This is while the stone sawability and 
diamond saw wear depend on a great many of the 
parameters and these parameters are in close 
connection with one another. Therefore, attaining 
a comprehensive method by means of which the 
sawing speed in stones and finally the diamond 

saw wear can be evaluated is under the focus of 
the current research paper. 
Classification systems are posited as effective 
tools in stone engineering for the purpose of 
evaluating the stone mass and material behavior. 
Therefore, according to the complicated nature 
and numerous effective factors influencing the 
stone sawing process and considering the diamond 
saw wear, it seems that the use of a classification 
system can be a solution in resolving the 
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complicacies extent in evaluating the stone 
sawability as well as diamond saw wear 
prediction. The present work offers a novel 
classification system incorporating the effective 
stone physical and mechanical parameters 
according to the observation of principles like the 
non-existence of boundary constraints and  
inter-parameter overlapping to evaluate the 
diamond saw wear in the process of sawing 
dimensional stones. Up to the current point in 
time, the majority of the works performed in 
classifications area have been based upon classic 
measures. In such systems, some rocks are 
classified inaccurately due to the distinctions 
made between various classes as a result of a 
number of fixed constraints, and this is not 
optimum at all. According to the idea that the 
increase in the classification precision as well as 
the increase in the confidence level is always an 
optimum suitability, the present work makes use 
of fuzzy logic to elevate the precision and get 
close to the real conditions. 

2. Methodology 
The present research paper takes advantage of 
fuzzy logic combined with genetic algorithm 
(GA), as an evolutionary system, for the purpose 
of improving the rock engineering systems (RESs) 
and increasing the classification confidence, 
enhancing the stone sawing process, and 
predicting diamond saw wear. In rock engineering 
procedures, the choice of the important 
parameters and taking the effects of various 
variables into consideration and combining these 
parameters alongside one another are altogether 
the most important stages of the research work. 
Figure 1 illustrates a flow chart of the operations 
performed in the current research paper. 
Fuzzy logic is enumerated a mathematical 
solution in classification problems and static 
boundary conditions problem-solving. There is no 
clear boundary in fuzzy logic, and the various 
element association with different concepts and 
subjects is relative, and the elements are not 
divided into two sets of members and  
non-members. The membership of the various 
elements ranges from 0 to 1 in fuzzy systems [30]. 
GAs are efficient in different non-linear  
non-analytical functions of the mathematical 
equations describing various phenomena in nature, 
and they are required to be solved and their 
answers to be found for various engineering 
designs. Optimizing the structure causes a 
reduction in the system’s time and cost. 

2.1. Classic RES method 
Rock engineering system was first offered by 
Hudson in 1992, and it has been widely applied in 
problem-solving measures since then. Based on 
the Hill and Warfield’s theory, the RES systems 
are displayed in matrix form in various 
applications, and these matrices exhibit the entire 
characteristics of the system including the 
components, interactions, and system’s 
distinguished borders [31-32]. 
In RES, the factors mutually influence each other 
that these interactions are considered. The major 
effective factors in the corresponding problem are 
stretched along the matrix main diagonal, and the 
interactions between each pair of the 
aforementioned factors are found in the other 
entries. 
There are five various methods available for 
coding the interaction matrices including binary, 
expert semi-quantitative (ESQ), parameters 
diagram slope, dissimilar method based on direct 
systematic approach, and explicit methods [33]. In 
the diagram exhibiting the parameters cause-
effect, the influence of one parameter on the 
system is called cause, and the effect of system on 
the parameter is termed effect. These diagrams are 
obtained from the influence of interactive 
matrices’ effects, and they demonstrate the 
possibility for the identification of prevalent 
design parameters as well as the intensity of the 
individual interactions on the system behavior. 
The sum of each row and column is calculated 
after matrix coding. The sum of the numerical 
amounts obtained for each line as the “cause” or 
P1 influence on the system is designated by “C” on 
the coordinate system, and the algebraic sum of 
every column as the system “effect” on or result 
from P1 is denoted by “E”. The way a parameter 
influences the system as well as the way it is 
influenced by the system is shown on the 
coordinate system in Figure 2 [33]. 
After plotting the cause and effect diagrams and 
performing the necessary analyses, finally, 
Equation (1) is applied to calculate the weight of 
each parameter and the parameters’ interaction 
intensity [34]. 

1 1 




 
i i

i n n

i i
i i

C E

C E
  

(1) 

where i is the number of major parameters, α1 is 
the weight of the ith parameter, C1 is the effect of 
the ith parameter, and E1 is the effect on the ith 
parameter. 
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Figure 1. A new classification method flowchart to predict wear performance of circular dimond saw. 

 

 
Figure 2. Summation of coding values in column and row through each parameter to establish cause and effect 

coordinates [33]. 
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2.2. Fuzzy RES method 
In the fuzzy RES method, the parameters’ weights 
are assigned in a fuzzy form in lieu of making use 
of the fixed values specified by Equation (1). In 
this mode, the allowable span selected based on 
the fuzzy membership function in the form of a 
given category will be divided into several 
categories, and each of these categories are 
assigned with corresponding weights based on the 
amount of effect each of them exerts. Gaussian 
(normal) membership function has been used in 
the proposed method based on natural system 
studies and variable interaction investigation. 
Normal distributions are important in statistics, 
and are often used in the natural and social 
sciences to represent real-valued random variables 
whose distributions are not known [35]. As it can 
be seen in [35, 37], especially in statistics, normal 
distributions is the most important distribution to 
explain the behavior of variables with an 
unknown nature. As a result, membership 
functions in fuzzy systems use the PDF of 
variables to explain the fuzzy behavior of this, so 
as a direct result, the normal PDF is the best 
choice in natural systems. 
The major parameters in the normal membership 
function are classification average and variance, 
and the membership function can be calculated by 
the use of numerical methods and each sample 
span certainty, and then it can be given certain 
variables. 
In the Gaussian membership function, each new 
variable is replaced with a real value that shows 
its probability to occur in this distribution 
(membership) function. Obviously, if the value is 
far from the center (mean value) of distribution 
function, the probability of its occurrence is low, 
and if this value is near to center of MF 
(Membership Function) the probability is near to 
maximum. In fact, these probabilities form the 
fuzzy value for each variable, and a combination 
of them form the final result. 
In assigning the weights in normal fuzzy function, 
instead of calculating the weight in the form of a 
fixed value in the entire span, the weight takes the 
highest likely value in the maximum average 
point, and its value decreases with it being placed 
at the extremes of the span, and then the effects of 
the variables in the points, the distances of which 
are considered more than what is expected will be 
decreased to the same extent. In case the 
parameters’ patterns or the natural variables do 
not follow the normal membership function, there 
are certain statistical tests that exactly determine 
the membership function confidence level and 

show the membership function inefficiency in the 
parameter of concern. 
Normal (Gaussian) membership function, due to 
its being closer to natural processes, its continuous 
mode and high precision is considered as one of 
the most common membership functions in the 
fuzzy systems. It is evident that fuzzy simple 
functions such as triangular and trapezoidal are 
not able to explain the real behavior of complicate 
natural variables accurately and only give a 
simplified explanation of these variables. 
Different from them, the Gaussian function is able 
to explain natural systems so accurate [36-37]. 
Under some reasonable assumptions, it can be 
proved that Gaussian functions are the most 
adequate choice of the membership functions for 
representing uncertainty in measurements [37]. 
Finally, a Gaussian membership function was 
selected as the appropriate membership function 
of choice in the proposed method, and its 
precision and correspondence to the perceived 
data was statistically tested. After attributing the 
membership function to the effective parameters 
in the classification, combining the parameters 
formed the final system in which case the final 
decision-making is carried out with a certain fixed 
threshold and usually quite similar to what takes 
place in classic systems. 

3. Fuzzy empirical modeling 
In the classic RES method adopted in the prior 
works, firstly, the expert ideas are considered 
fixed or absolute; secondly, according to the idea 
that sampling is performed on a smart community 
in the engineering area, the notion scattering 
and/or expert idea variance is neglected. The 
closeness or the distantness of the expert ideas in 
the proposed fuzzy system should be weighted 
based on a correct and authentic pattern. 

3.1. Database compilation and information 
preparation 
At first, a comprehensive questionnaire was 
administered to 30 experts. The questionnaire 
collected the data pertaining to the effects of the 
entire variables in a five-level format according to 
the effect they exert on abrasion as it is considered 
by the individuals expert in this field. In order to 
be able to retrieve the patterns defined by various 
experts in an appropriate manner by means of the 
MATLAB software (2016 edition), the entire 
information was identically inserted in Excel 
covering all the notions existent in the survey. A 
sample of the prepared matrix in Excel is given in 
Table 2. 
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Table 2. A sample of matrix completed by expert individuals. 

 
UCS BTS N ρ W Sf-a Ym EQC TC Gs IRB LA MH 

UCS UCS 2 0 2 1 2 2 0 1 0 2 1 1 
BTS 3 BTS 0 1 2 1 1 0 1 0 1 1 1 

N 2 4 N 2 4 1 2 0 1 0 2 2 0 
ρ 3 3 3 ρ 3 2 3 0 1 1 2 2 1 
w 2 3 4 3 W 2 2 0 1 2 2 2 2 

Sf-a 3 2 2 2 1 Sf-a 2 1 1 2 2 2 1 
Ym 3 2 2 2 1 1 Ym 0 2 1 2 2 1 
EQC 3 3 2 3 2 3 3 EQC 2 2 3 3 2 
Tc 3 2 1 2 1 2 2 1 Tc 1 2 2 1 
Gs 2 3 2 3 3 2 3 1 1 Gs 3 3 2 

IRB 3 3 3 3 2 2 3 1 2 1 IRB 3 4 
LA 3 2 2 3 2 2 2 1 1 1 3 LA 3 
MH 3 3 2 3 2 3 3 2 2 2 3 3 MH 

 

where UCS is the uniaxial compressive strength, 
BTS is the indirect Brazilian tensile strength, N is 
the porosity, ρ is the density, W is the water 
absorption percentage, SF-a is the Shimazaki 
abrasion, YM is the Young’s modulus, EQC is the 
quartz content, Tc is the tissue coefficient, Gs is 
the grains size, IRB is the Schmidt hammer 
rebound hardness, LA is the Los Angles abrasion, 
and MH is the Mohs hardness. As a specimen, the 
first row and the third column in Table 2 are 
indicators of the extent to which N influences 
UCS. 

3.2. Membership function allocation 
At this stage, there are thirty 13×13 matrices. 
According to the probability density function 
being specified, it is now necessary to control the 
minimum number of the samples required by the 
experts so as to save a sufficiently high 
confidence margin for the results, and the outputs 
can be offered as statistically significant as 
possible. 
The minimum quantity of the sample so as to 
make a distribution follow the normal patterns 
corresponding to a central limit theorem is that the 
sample dimensions must exceed 20. In case that 
the sample dimensions are very large, the 
probability density pattern disregarding the type 
of the variable and its pattern will necessarily shift 
towards a normal pattern [38]. This is one of the 
most important principles for reasoning the use of 
normal probability density function in fuzzy 
pattern of the proposed method. To determine the 
sample size, and according to the maximum 
standard deviation existent in the extracted 
information, and considering a very high 
confidence level, a number of thirty samples was 
envisaged appropriate. 
3.3. An appropriate fuzzy pattern 
In the compiled 13×13 matrix, there are totally 
144 fuzzy patterns required for displaying the 

variables’ relationships. If each variable is 
assigned with a normal fuzzy pattern, for each one 
of the variables in the thirteen-fold variable set, 
there will be totally 12 fuzzy membership 
functions (other than the variable with itself), and 
these membership functions can model the 
relationship pattern of this variable with the others 
with a high precision rate; in addition, the 
efficiency of the modeling will be increased. 
In MATLAB, expert ideas are inputted to the 
system as random fuzzy samples, and based on 
this, a normal probability density function will be 
generalized as the membership function. To 
obtain the normal pattern according to the 30 
aforementioned samples, various numerical 
methods like core method and B-splines can be 
used [36, 38]. In case that the information does 
not follow the normal pattern, the maximum 
similarity scale as an authentic test can be 
excluded, and it enjoys a greater reliability with 
respect to the other tests [39]. To assure the 
confidence of the replies acquired in the proposed 
method, the pattern authenticity was again 
evaluated in the form of questionnaires 
administered to the experts by taking advantage of 
the Anderson-Darling statistical test [40]. The test 
is of use in analyzing the similarity or the 
identicalness of the type of change between two 
random variables, and it delivers high efficiency, 
particularly in calculating the goodness of fitness 
or the model-information match [41]. The results 
obtained in this test for all of the 144 cases 
indicated that the model information absolutely 
complied with the pattern. The mean and standard 
deviation values per the entire obtained samples 
were tabulated in Table 3, which provides 
information regarding the preliminary fuzzy 
membership functions including the entire figures 
and elements pertaining to the produced matrices. 
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For instance, in column 8, there are smaller 
figures that are indicative of the trivial effect of 
various variables on EQC. The form of the 
numbers presented in the table completely 
justifies the use of the proposed fuzzy pattern in 
terms of the experts’ ideas discrepancies or 
consensus. Several sample values regarding the 
expert ideas’ scattering were given in Table 4.  

In Table 4, the first line shows the name of the 
two variables about which the experts’ ideas do 
not conform, and the second line indicates the 
standard deviation. For instance, the figure 
“1.035” in the first column is reflective of the idea 
that the UCS’s effect on MH is regarded as 
featuring too much scattering in terms of the 
experts’ ideas. 

 
Table 3. Mean and standard deviation of variables and Gaussian fuzzy membership functions (mean and 

standard deviation). 
 UCS BTS N ρ W Sf-a Ym EQC Tc Gs IRB LA MH 

UCS 
0.000 2.250, 

0.463 
0.750, 
0.463 

2.500, 
0.756 

1.375, 
0.518 

1.375, 
0.916 

2.000, 
0.756 

0.500, 
0.756 

0.750, 
0.463 

0.125, 
0.354 

2.500, 
0.926 

2.000, 
0.926 

1.250, 
1.035 

BTS 
2.875, 
0.354 0.000 0.500, 

0.535 
1.750, 
0.886 

1.625, 
0.518 

2.375, 
1.061 

1.875, 
0.835 

0.750, 
1.389 

0.875, 
0.641 

0.250, 
0.707 

1.875, 
1.356 

1.375, 
0.518 

1.000, 
1.309 

N 
3.000, 
0.535 

2.750, 
1.035 0.000 2.375, 

0.518 
3.375, 
0.916 

1.500, 
0.926 

2.000, 
0.756 

0.000, 
0.000 

1.250, 
0.707 

0.250, 
0.707 

2.250, 
0.463 

2.000, 
0.000 

0.625, 
0.518 

ρ 
3.250, 
0.707 

2.750, 
0.707 

3.000, 
0.000 0.000 2.875, 

0.835 
1.625, 
0.518 

2.625, 
0.518 

0.000, 
0.000 

1.375, 
0.744 

1.000, 
0.000 

2.625, 
0.518 

2.250, 
0.463 

1.625, 
0.916 

W 
2.375, 
0.744 

2.625, 
0.518 

2.875, 
1.246 

2.250, 
1.035 0.000 1.125, 

0.835 
2.125, 
0.835 

0.000, 
0.000 

0.875, 
0.354 

0.875, 
0.835 

1.750, 
0.463 

1.625, 
0.518 

1.500, 
0.535 

Sf-a 
2.375, 
0.744 

2.000, 
0.535 

1.375, 
0.916 

1.375, 
0.916 

0.750, 
0.463 0.000 1.500, 

0.926 
0.750, 
1.035 

1.375, 
0.744 

1.250, 
0.707 

2.000, 
0.000 

2.500, 
0.756 

1.625, 
0.518 

Ym 
2.500, 
0.535 

2.000, 
0.000 

1.250, 
0.886 

1.750, 
1.165 

0.750, 
0.463 

0.875, 
0.641 0.000 0.125, 

0.354 
1.500, 
0.756 

0.500, 
0.535 

2.000, 
0.000 

2.375, 
0.518 

1.375, 
0.518 

EQC 
3.375, 
0.518 

2.500, 
0.535 

1.125, 
0.835 

2.500, 
0.756 

1.750, 
0.463 

3.250, 
0.707 

2.750, 
0.463 0.000 1.250, 

1.035 
0.875, 
0.735 

2.875, 
0.835 

3.000, 
0.000 

2.750, 
1.389 

Tc 
2.750, 
0.707 

2.250, 
0.463 

1.875, 
0.835 

2.500, 
0.535 

1.750, 
0.886 

2.500, 
0.535 

2.125, 
0.354 

0.875, 
0.641 0.000 1.750, 

1.035 
2.250, 
0.463 

2.250, 
0.463 

1.625, 
0.916 

Gs 
2.750, 
1.035 

2.500, 
0.756 

2.250, 
0.707 

2.375, 
0.744 

2.500, 
0.756 

2.875, 
0.835 

2.375, 
0.518 

0.500, 
0.535 

1.875, 
0.835 0.000 2.500, 

0.756 
2.250, 
0.707 

1.875, 
0.354 

IRB 
3.750, 
0.463 

2.875, 
0.354 

1.875, 
1.246 

2.250, 
1.035 

1.250, 
1.035 

2.250, 
0.463 

2.375, 
0.518 

0.500, 
0.535 

1.500, 
0.926 

1.500, 
0.926 0.000 2.500, 

0.535 
3.375, 
1.061 

LA 
2.625, 
0.744 

1.750, 
0.463 

1.625, 
1.188 

2.375, 
1.061 

1.500, 
0.926 

2.500, 
0.535 

1.750, 
0.463 

1.000, 
0.926 

1.125, 
0.835 

0.875, 
0.641 

2.000, 
0.926 0.000 2.250, 

0.707 

MH 
2.750, 
0.463 

2.375, 
0.744 

1.375, 
0.916 

2.375, 
0.916 

1.625, 
0.518 

2.625, 
0.518 

2.125, 
0.835 

1.375, 
1.302 

1.375, 
0.916 

1.375, 
0.916 

2.750, 
0.707 

2.875, 
0.354 0.000 

 
Table 4. Expert ideas scattering. 

UCS, MH BTS, Sf-a BTS, EQC BTS, IRB BTS, MH N, BTS W, N W, ρ Sf-a, EQC 
1.035 1.061 1.389 1.356 1.309 1.035 1.246 1.035 1.035 

 
3.4. Information processing 
To sum up a value from each variable in an active 
or interactive mode, the membership functions 
should be appropriately intermingled so as to be 
able to obtain a fuzzy number, indicating the 
degree to which each variable is significant. To 
combine the fuzzy membership functions, a 
specific mathematical method based on a 
randomized process is applied. In this method, 
10000 random samples are generated by taking 
advantage of the probability density pattern. 
According to the complicacy of this stage, 
Normrnd instruction in the MATLAB software is 
used. The instruction is a generator of the 

randomized figures based on Gaussian pattern 
with pre-determined mean and standard deviation 
[42-43]. Randomized samples are again mixed, 
and a Gaussian pattern is obtained in every line, 
and it is somehow the output of the entire variable 
aggregation. After calculating a thousand figures 
for each one of the elements, twelve elements of 
every line or column are placed at the side of one 
another, the result of which is a  
120-thousand-tuple vector for every line or 
column. Using this 120-thousand-tuple vector, a 
fuzzy pattern was again calculated in a unitary 
format [39]. The mean and the standard deviation 
of this pattern is in fact the final output of the 
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method or the same final fuzzy value of the 
variables. This procedure was repeated separately 
for the lines and the columns. Another advantage 
of this proposed method is the direct effect of the 
mean and the standard deviation of the entire 
membership functions in the final response. All 
responses unexceptionally exert a fuzzy effect on 
the final response in mathematical terms. As a 
final response and overall summation of the 
results, Table 5 presents the amount of effect each 
one of the variables, as distinguished by every line 
and column, has on the diamond saw wear 
considering the ideas and notions by the experts 
and the statistical and fuzzy computations. 
Finally, combining lines and columns’ sums for 
each of the variables according to Equation (2) 
provides the final fuzzy weight of each variable 
that can be seen in the ending line of Table 5. 

1





i i

i i

row Col
N

row Col
i

Z Z

Z Z
  

(2) 

where 
irowZ  is the lineal fuzzy weight for variable 

i, 
iColZ is the columnar fuzzy weight of variable i, 

and N is the total number of the variables. The 
maximum and minimum weights belong to IRB 
and EQC, respectively. 
The Z values are mean of normal probability 
density function that can be estimated from the 
value of input variables with many numerous 
methods such as maximum likelihood method, 
which maximize the log-likelihood function [44]. 

 
Table 5. Linear, columnar, and final fuzzy weights of variables. 

Variable name Column Row Final fuzzy 
weights Mean Variance Mean Variance 

UCS 2.862 0.769 1.448 1.060 0.0900 
BTS 2.383 0.684 1.424 1.176 0.0802 

N 1.659 1.153 1.782 1.233 0.0715 
ρ 2.199 0.952 2.081 1.095 0.0888 
W 1.759 1.049 1.664 1.090 0.0710 

Sf-a 2.071 1.025 1.573 0.911 0.0761 
Ym 2.135 0.756 1.417 0.946 0.0742 
EQC 0.533 0.886 2.332 1.129 0.0594 
Tc 1.26 0.822 2.039 0.838 0.0686 
Gs 0.883 0.892 2.215 0.939 0.0642 

IRB 2.28 0.801 2.166 1.199 0.0921 
LA 2.249 0.704 1.784 0.993 0.0840 
MH 1.741 1.134 2.088 0.993 0.0798 

 
4. Classification of saw wear evaluation 
To compile and offer a classification system in 
rock engineering, the selection of key parameters 
and their combinations are among the most 
important principles of designing and creating a 
classification system [45]. A classification system 
becomes acceptable when, besides featuring 
simplicity (minimum time and test costs), it can 
capture the entire physical and mechanical 
characteristics of rocks with the minimum 
quantity of parameters. 

4.1. Selecting effective parameters 
The four parameters, namely Schmidt hammer 
rebound hardness, uniaxial compressive strength, 
Los Angles abrasion, and elasticity module, due to 
the higher final weight (Figure 3 and Table 6), 
have been, respectively, proposed and utilized as 
the representatives of the four important features 

of the rocks including hardness, abrasion, 
compressive strength, and elasticity properties. 

A) Schmidt Hammer 
Hardness is a function of the intrinsic factors like 
the type of the mineral, the elastic-plastic behavior 
of the rock, and the grain dimensions. The 
combination of these factors determines the 
hardness of a rock. The final weight attributed to 
Schmidt hardness is also obtained via summing 
the weights belonging to two parameters Schmidt 
hardness and Mohs hardness equal to 17.3. 

B) Uniaxial Compressive Strength 
This parameter represents many physical and 
mechanical characteristics of the rock including 
the texture, density, compressive strength, indirect 
Brazilian tensile strength, porosity, and water 
content. The weight sum of all these parameters 
equal to 46.9 is considered as the final weight of 



Akhyani et al./ Journal of Mining & Environment, Vol. 10, No. 3, 2019 
 

567 
 

the uniaxial compressive strength in the new 
classification system. 

C) Los Angles Abrasion 
The rocks’ wearing and abrasion ability depend 
on the type and amount of the mineral, the number 
of micro-cracks, and weathering degree as well as 
the inter-grain adhesion. To investigate the stone 
abrasion in laboratories, there are numerous 
methods offered by a great many of the 
researchers some of which are being widely used. 
Abrasion tests based on Los Angles method are 
being frequently used today. The method is 
applied to determine the rock material strength 
against abrasion upon receiving impacts. Los 
Angles abrasion is utilized as the quantitative 
index of rock abrasion evaluation. This parameter 
weight also calculated from the sum of 
Schimazek’s F-abrasiveness grain size and the 
quartz content is 28.4. 

D) Elasticity Module 
By focusing on the way rocks behave in failure 
process as well as on the formation of chips in the 
process of sawing stones, it can be found out that 
the way a stone sample reaches its maximum 
compressive strength highly influences the 
diamond sae wear. Although this parameter 
influences the other properties of rocks, the effects 
it exerts are more considerable than its being 
influenced by the other parameters. Elasticity 
module is utilized as the parameter indicative of 
the rock’s elastic behavior with a final weight 
equal to 7.4. 
Thus this way, the weight of each one of the four 
parameters, namely Schmidt hardness, uniaxial 
compressive strength, Los Angles abrasion, and 
elasticity module, should be determined for the 
evaluation of diamond saw wear. Figure 3 
illustrates the final weight of these parameters. 

 

 
Figure 3. Final weight values of effective parameters in new classification. 

 
4.2. Determining span (spanning) 
4.2.1. Fixed spanning 
Diamond saw wear is specified in the format of a 
scale from as very low to very high. Boundary 
selection takes place in a five-level scale 
including “very low”, “low”, “medium”, “high”, 
and “very high”. This grading method is the most 
widely applied method in acquiring the experts’ 
ideas [46]. Wear rate calculation based on fuzzy 
weights is carried out according to Equation (3): 

1 2

3 4

Y UCS  IRB

Ym LA

  


Model group group

group group

 

 
 (3) 

where, Ymodel is the predicted wear (output), and 
α1, α2, α3, and α4 are, respectively, the weights of 
the fuzzy groups UCS, IRB, YM, and LA, which 
are obtained from every group based on Figure 3 
and with a final fuzzy summing of the 
corresponding variables, as presented in Table 5. 
The final fuzzy weights are given separately in 
Table 6. 
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The values allocated to each variable in Equation 
(3) are determined though the grading method, 
and they range from 1 to 5. In grading by the use 
of equal spans, the variations take a linear form. 
Table 7 presents the results for the grading based 
on the method mentioned above for the four major 
variables and the wear value (output). The figures, 
respectively, specify the various spans’ floor and 
top values. In case that the selected spanning 
method is exercised accurately and correctly, an 
appropriate span limit of the wear (Ymodel) should 
be obtained via substituting the spans obtained 
and multiplying them by the fuzzy values of all 
the four aforementioned variables. 
At this stage, uniform spanning was also used for 
the dependent variable, Ymodel. Since the measured 

wear amounts are very small, the entire measured 
wear amounts were multiplied by 107 so as not to 
allow for the rounding errors. The wear rate was 
measured between 4.5 and 72 in this work (Table 
10). Utilizing this classification standard and 
comparing the responses by the extracted 
information, it was found out that there was a high 
error rate in Table 10. The performed 
classifications could be accepted even with an 
error step but there still exists ten other errors, and 
this is reflective of a 66% error in estimating the 
figures for every set. In this way, Equation (3) and 
the exercised fixed classification are by no means 
applicable in predicting the error level wear of 
circular diamond saw. 

 
Table 6. Final fuzzy weight of each variable group. 

Coefficient 1  2  3  4  
Final fuzzy weight 0.470 0.172 0.074 0.284 

 
Table 7. Classification based on fixed spanning for effective variables and wear rate (output). 

Parameters Grading 
UCS 50-88 88-126 126-164 164-202 202-240 
IRB 50-56 56-62 62-68 68-74 74-80 
YM 20-30 30-40 40-50 50-60 60-70 
LA 15-21 21-27 27-33 33-39 39-45 

Saw wear 
(output) 3.6-20.16 20.16-36.72 36.72-53.28 53.28-69.84 68.84-86.4 

Classification Very low Low Medium High Very high 
 
4.2.2. Using GA and Dissimilar method to 
spanning 
GA is a relatively optimum and effective method 
capable of being applied in a wide spectrum of the 
problems without creating divergence issues that 
make it an efficient method utilized by a great 
majority of the researchers and designers in 
various fields of study [47-48]. GA was used for 
the determination of the spans in a dissimilar form 
in MATLAB software. In the GA step, for all the 
input and output variables, unequal boundary 
numbers in each variable interval area were found. 
The cost function of the GA step is Error in final 
classification. The determined boundary numbers 
are used for classification. The error percentage in 
this mode (classification error) is the cost function 
of GA that should be minimized. Please note that 
a one-level mistake in predicting Saw wear is 
negligible and does not count in errors. For each 
set of variables, four boundary numbers should be 
found (the start and end of interval are known). 
The results obtained are given in Table 8. 
At this stage, a minimum limit of 0.16 was 
selected for every span so as to prevent every span 

value to go below a certain figure. In this way, in 
a 190-unit span, the minimum width of every 
category should be approximately 30.4. This 0.16 
limit was chosen based on trial and error with the 
purpose of maximizing the accuracy percentage. 
With the selection of such a figure, none of the 
spans would go below this value. As for the span 
roof, no roof was considered, and the only 
condition was that the spans after the selected 
span should be able to take the minimum foresaid 
length in order to not allow for contradicting the 
lowest boundary for any of the variables. 
The designed GA possesses 20 variables, and it 
has to be able to obtain four certain values for 
each of the five-level sets. At this stage, use 
should be made of binary GA. Every variable 
precision rate was considered to be 8 bits 
according to the existent limited spans and based 
on the most open span, i.e. UCS. In case that this 
figure is increased, and accordingly, the precision 
increased, no effect is observed in the table, and 
only the algorithm calculation load and 
implementation time would be increased. The 
figure selection accuracy suffers a decrease, and 
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the error level worsens with narrowing the span. 
Due to having 20 variables and allocating 8 bits to 
each of them, at the end, the gene obtained for 
each sample would be a 160-bit gene, which is 
considered as an appropriate figure for a GA with 
normal complicacy. The mutation likelihood that 
is an important parameter of GA was considered 
equal to 0.01, according to the problem structure. 
The number of overlapping points was 9 and the 
overlap algorithm, a multi-point algorithm, was 
selected based on stochastically selecting the 
points. The number of preliminary samples, the 
studied sample volume, was considered to be 
equal to 512 at first. No special effect was 
observed in responses with lowering or increasing 
the number of this variable. The spans were 
dissimilarly obtained with respect to the span 
recommended by GA, and the response accuracy 
in this mode was improved in contrast to the 
previous mode. In this mode, as compared with 
the linear mode with equal span, the first span 
showed a relatively high expansion in the UCS 
variable, and the next spans became shorter in 
length. Regarding the other variables, the 

dissimilar response differs from the normal one 
but it is not considerable. As for the spanning for 
the output variable (Ymodel) in dissimilar mode in 
respect to the normal mode, again changes were 
observed in some of the parameters. For instance, 
in the dissimilar mode, the first span for UCS was 
initiated from 3.6 and ended in 23.5; whereas, in 
the span featuring a fixed length, the first span had 
a shorter length. In fact, GA takes lower values 
for the spans in middle levels so as to increase the 
accuracy in the middle sections and compensate 
for the higher number of the samples and the 
centralization of the figures in the middle sections. 
However, there are still a total of 4 classification 
errors in the model of Table 8, with the real 
information (Wr column of Table 10), and this is 
not an acceptable error level for grading 
procedures, so the model of Table 8 is not good. 
The accuracy percentage in this mode, assuming 
an allowable tolerance equal to 1 in responses, 
was 55.5%, which is not acceptable. The 
responses obtained indicate that the spanning 
output, albeit dissimilar, is still unable to correctly 
model the real variables. 

  
Table 8. Dissimilar classification with a fixed span for effective variables and wear rate (output). 

Parameters Grading 
UCS 50-116.59 116.59- 148.69 148.69-179.12 179.12-209.58 209.58-240 
IRB 50-59.01 59.01-64.42 64.42-69.56 69.56-74.82 74.82-80 
YM 20-37.39 37.39-45.91 45.91-53.94 53.94-61.95 61.95-70 
LA 15- 23.09 23.09-28.09 28.09-34.98 34.98-39.82 39.82-45 

Saw wear (output) 3.6- 23.51 23.51-41.95 41.95-57.65 57.65-72.04 72.04-86.4 
Classification Very low Low Medium High Very high 

 
4.2.3. Choosing boundary numbers based on 
logarithmic mapping and Dissimilar GA 
Logarithm operator can correct the output 
classification performance via limiting the 
changes in relatively big spans and heightening 
the precision in relatively small changes. The 
intrinsic weak point of the logarithmic operator is 
in taking negative figures and 0, while there is no 
zero or negative wear in saw wear tests. In the 
proposed method, the grading was carried out in 
logarithmic space after multiplying the output 
values by 107 by the use of logarithmic operator. 
As it can be seen from the rounded figures, in this 
mode, the expanded span of the changes will be 
appropriately limited by the use of logarithmic 
operator and the differences in the lower spans 
show more appropriate results. In this mode, the 
inputs keep their linear span form and logarithmic 
mapping was only exerted on the output variable 
(wear) of the classification. After getting the novel 
dissimilar spanning done, wear was computed by 

the use of logarithmic operator. The obtained 
response per all the samples is given in Table 9 
with a precision of three decimal numbers after 
being transferred to logarithm space. To score a 
value for the various amounts of a parameter in 
the new classification system, the highest score 
(very high) was assigned to the best status. 
Maximum scores of 70%, 50%, 25%, and 10% 
were, respectively, allocated to different states 
including “high”, “medium”, “low”, and “very 
low”. 
In comparison with the no-logarithm mode, the 
changes in the second variable are not so much 
evident but variations are clearly observed in 
variables 1, 3, and 4. Considering a unit tolerance 
in reporting the results obtained through this 
method, no error was observed. The final 
Equation takes the form of Equation (4): 

10 1 2

3 4

log (Y ) UCS  IRB

Ym LA

  


Model group group

group group

 

 
 (4) 
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where the coefficients and the variables are 
described similar to Equation (3). 
At a glance, the task of fuzzy logic and GA is 
fully different in our work. Fuzzy logic is used to 
find membership functions and assign a fuzzy 
value to each input. After this step, GA finds a 
spanning value for each fuzzy output to maximize 
system accuracy. The cost function of GA is the 
error rate of the model that should be minimized, 

and the GA variables (genes) are spanning levels 
for fuzzy outputs. Fuzzy outputs are fuzzy values 
of each input. In fact, these methods are used in a 
hierarchical situation. Firstly, fuzzy logic changes 
the input variables to fuzzy values, and then the 
levels found by GA classify these fuzzy values 
and apply them to a final model. The output of the 
model is the circular diamond saw wear. 

 
Table 9. New classification for prediction of diamond saw w in process of cutting hard dimensional stones. 

Parameters Value rows 

1 

Uniaxial 
compressive 

strength (MPa) 

˂103 103-144 144-177 177-209 209˂ 

Strength very 
low Strength low Strength 

medium Strength high Strength very high 

Score 4.7 11.7 23.4 32.8 46.9 

2 Schmidt hardness ˂ 60 60-65 65-70 70-75 75˂ 
Very low Low Medium Hard Very hard 

Score 1.7 4.3 8.7 12.1 17.3 

3 
Elasticity Module 

(GPa) 
˂37.7 37.7-45.8 45.8-53.9 53.9-62 62˂ 

Very low Low Medium High Very high 
Score 0.7 1.9 3.7 5.2 7.4 

4 
Los Angles 
Abrasion 

˂22.8 22.8-27.7 27.7-34.6 34.6-39.8 39.8˂ 
Abrasion very 

low Abrasion low Abrasion 
medium Abrasion high Abrasion very 

high 
Score 2.9 7.1 14.7 19.9 28.4 

Saw wear (output) 0.52-0.85 0.85-1.16 1.16-1.60 1.60-1.92 1.92-2.23 

Classification Very low Low Medium High Very high 
 
5. Validation of results 
To assess the proposed model’s authenticity, rock 
mechanics tests were carried out on 9 hard 
dimensional stone types. Also the diamond saw 
wear rate was examined and measured in the 
process of cutting. Figure 4 exhibits a sample of 
uniaxial compressive strength test. 
  

 
Figure 4. Uniaxial compressive strength test. 

 
The results of the conducted tests are presented in 
Table 10. To measure the wear rate, and validate 

the proposed model, a dimensional stone sawing 
machine was built lab-sized. A maximum spindle 
motor power of 4 kw was used in manufacturing 
the machine, and the machine is comprised of 
three main parts, namely sawing blade, 
measurement tools, and a personal computer. The 
changes in operating parameters like advance rate, 
peripheral speed, and sawing depth are measured 
and recorded by the machine (Figure 5). 
  

 
Figure 5. Dimensional stone sawing machine. 
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Diamond saws average wear rate was obtained in 
the form of the reductions in the length, width, 
and height in 18 diamond segments, each with a 
size of 35 mm × 2.5 mm × 6.0 mm impregnated at 
the margin of a steel core by taking advantage of a 
digital micrometer with a resolution of 0.001 mm 
(Figure 6). 
 

 
Figure 6. Digital micrometer for measuring saw 

wear. 
 

Also the results of the spanning based on Table 9 
and the proposed model output are inserted in 
Table 10. Correlation coefficient (R2) between the 
results obtained for the proposed model and the 
results of the undertaken tests is 0.83, which is 
acceptable. 
where Wr is the saw wear measured in the sawing 
process. 

To confirm the authenticity and efficiency of the 
proposed method, a row was eliminated from the 
9 existing samples, and the model was again 
computed for the remaining samples and the 
results obtained were exerted on the omitted row 
in terms of spanning. This was repeated nine 
times for the entire samples in total, and relatively 
identical results and correct omitted row set were 
obtained in all the cases, which is indicative of the 
proposed method’s credibility and reliability. 
Finally, 9 evaluated rock samples were classified 
into three categories based on the proposed model. 
Samples 1 and 2 in category 2 were classified 
with a low abrasion rate, which is reflective of 
high sawability. Similarly, samples 3, 4, 5, 6, 7, 
and 9 in category 3 were classified with a medium 
abrasion rate (ranging in value from 5.00E-
06mm3 to 8.00E-07mm3), and they were found to 
have a good sawability. Sample 8 in category 4 
was found with a high saw wear rate  
(7.20E-06mm3), which is reflective of the weak 
sawability of the sample. According to the results 
obtained, it can be concluded that the new 
proposed model is capable of evaluating and 
classifying the sawability in the process of sawing 
hard dimensional stones. Based upon the section 
4.2.2 results, there are a total of 4 errors in the 
model designed by Table 8 that decreased in the 
final model (Y model of table 10) to 0. 
 

  
Table 10. Results of rock mechanics tests, measured saw wear, and proposed model and corresponding span. 

Sample 
Number 

UCS  IRB  YM  LA  Wr  107Wr  Log(107Wr)  Ymodel 

(MPa) Class no.  - Class no  (GPa) Class no  - Class no  (mm3)  107 mm3  - Class no  - Class no 

1 157 3  71 4  37 1  22.3 1  4.50E-07  4.5  0.653 1  2.46 2 

2 138 2  69.5 3  29 1  29.8 2  5.00E-07  5  0.699 1  2.1 2 
3 141 2  70.5 4  41.5 2  31.2 3  8.00E-07  8  0.903 2  2.63 3 
4 173 3  71.5 4  46 3  21.23 1  1.56E-06  15.6  1.193 3  2.6 3 
5 155 3  71 4  39 2  29.4 2  5.00E-06  50  1.699 4  2.81 3 

6 150 3  71.5 4  43 2  38.1 4  2.50E-06  25  1.398 3  3.38 3 
7 185 4  72 4  49 3  18.8 1  1.50E-06  15  1.176 3  3.07 3 
8 239 5  74 4  52 3  16.7 1  7.20E-06  72  1.857 4  3.54 4 

9 199 4  71 4  49.5 3  21.1 1  1.00E-06  10  1 2  3.07 3 

 
6. Conclusions 
In this paper, the effective parameters on the 
diamond saw wear in the process of sawing rocks 
were identified, and then their weight and 
importance were measured by rock engineering 
system (RES). RES is one of the most common 
and popular methods for determination of 
effective parameters in rock mechanics systems. 
In the classic RES method, at start, the expert 
ideas are collected, then according to these ideas, 
the correlation and importance of the all 

parameters were determined. In the last step of 
classic RES, some fixed weights based on the 
correlation and importance of each variable versus 
other variables were assigned to each variable. In 
modern systems, fuzzy RES, as a powerful 
method, is used instead of classic RES. The main 
advantage of fuzzy RES is its ability to model 
human ideas better than the classic method. One 
of the main weaknesses of the fuzzy RES methods 
in rock mechanics systems is its membership 
functions and the method for finding the 
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membership function parameters. In the proposed 
method, a novel sampling process was added to 
the model for finding the interaction between 
variables more accurately. This step enables a 
method to determine the significance of the 
parameters influencing the saw diamond wear. 
For modelling each variable in the fuzzy step, the 
Gaussian membership function was selected as the 
best choice in complicate fuzzy systems. The 
proposed method converts the experts’ ideas as a 
Gaussian pattern in fuzzy logic. The mean and 
standard deviation of the obtained membership 
functions were verified with a 95% confidence 
level using the Anderson-Darling test. Each 
variable had 12 membership functions related to 
other variables. For combining these membership 
functions belonging to each variable precisely, 
firstly, a random number generator was used to 
produce 10000 random numbers (in fact, this step 
is the sampling step) with the Gaussian function 
form for each one of 12 membership functions 
related to other variables. These random numbers 
merged, and a vector with length 120000 was 
assigned to each variable. This vector was used to 
calculate each variable final fuzzy pattern. Using 
this step, the mean and variance of fuzzy 
membership functions both have an effect on the 
final pattern. 
Based on the results obtained in the mentioned 
step, four parameters, namely uniaxial 
compressive strength, Schmidt hardness, Los 
Angles abrasion, and Young’s modulus with final 
weights of 46.9, 17.3, 28.9, and 7.4 were selected 
in the proposed system as representatives of the 
four important properties of the rocks: hardness 
features, strength, abrasion, and elastoplasticity 
properties. 
Finally, wear grading was computed by the use of 
the four effective variables based on fixed, 
dissimilar, and logarithmic boundary intervals 
whose models were optimized by GA. The cost 
function of GA is to minimize the classification 
error. Based on the results obtained, the 
logarithmic dissimilar boundary selection had the 
lowest error. After the Gaussian membership 
function and random number generation step, i.e. 
the main contribution of the proposed method, GA 
and optimization boundary intervals by a 
logarithmic mapping is the next novelty of our 
method. 
To validate the proposed model, real tests were 
carried out on 9 hard stone samples, and the saw 
diamond wear was measured. The experimental 
results were compared by the results of the 
proposed model. Eventually, it is clear that the 

proposed model is capable of evaluating the 
stones sawability by rock mechanics properties. 
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  چکیده:

کـاهش   بـراي یابی به شرایط بهینـه  هاي ساختمانی سخت یک گام مهم و اساسی براي دستیند برش سنگآهاي الماسی در فربینی عملکرد سایش دیسکپیش
هاي الماسی تعیین و سپس وزن هـر کـدام از ایـن پارامترهـا بـا      در سایش دیسک مؤثرپارامترهاي  در این تحقیق، .استهاي تولید در صنعت برش سنگ هزینه

  پـس از ایـن مرحلـه،     دهی متناظر با آن مورد بررسـی قـرار گرفـت.   هاي مهندسی سنگ فازي با یک الگوي گاووسی دقیق در منطق فازي با وزنرویکرد سیستم
بندي ثابت، تطبیقـی و لگـاریتمی بـا    هاي بازهبندي، بر اساس روشبندي چهار متغیر اصلی و میزان متغیر سایش دیسک (پارامتر خروجی) در سیستم طبقهسطح

هـا  نوآوري ترکیب ایـن روش  ،د. هدف اصلی روشپیشنهادي ارائه ش استفاده از الگوریتم ژنتیک صورت گرفت. در نهایت یک رابطه ریاضی براي ارزیابی دقت مدل
بنـدي ثابـت   هاي مهندسی سنگ فازي تنها از توابع عضویت ساده و بازهدر روش سیستم تحقیق،هاي مهندسی سنگ فازي است. قبل از ارائه این با روش سیستم

  آخـرین بررسـی انجـام شـده بـراي اولـین بـار در         اسـاس  بـر ان تابع عضـویت،  بندي و توزیع نرمال به عنوبازه براي. استفاده از الگوریتم ژنتیک بوداستفاده شده 
نمونه سنگ سخت انجـام و مقـدار    9مکانیک سنگ بر روي  هايسنجی مدل پیشنهادي، آزمایشهاي مهندسی سنگ فازي استفاده شد. به منظور صحتسیستم

هاي سایش دیسک بینی پیششد. بر اساس نتایج، مدل پیشنهادي توانایی قابل قبولی در  گیري شده، با نتایج مدل پیشنهادي مقایسهالماسی اندازه سایش دیسک
  الماسی دارد.

  هاي مهندسی سنگ فازي، الگوریتم ژنتیک.اي، سیستمالماسی دایره سایش دیسک کلمات کلیدي:

 
 


