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Abstract 
In mining projects, all uncertainties associated with a project must be considered to 

determine the feasibility study. Grade uncertainty is one of the major components of 

technical uncertainty that affects the variability of the project. Geostatistical simulation, 

as a reliable approach, is the most widely used method to quantify risk analysis to 

overcome the drawbacks of the estimation methods used for an entire ore body. In this 

work, all the algorithms developed by numerous researchers for optimization of the 

underground stope layout are reviewed. After that, a computer program called stope 

layout optimizer 3D is developed based on a previously proposed heuristic algorithm in 

order to incorporate the influence of grade variability in the final stope layout. Utilizing 

the sequential gaussian conditional simulation, 50 simulations and a kriging model are 

constructed for an underground copper vein deposit situated in the southwest of Iran, 

and the final stope layout is carried out separately. It can be observed that geostatistical 

simulation can effectively cope with the weakness of the kriging model. The final results 

obtained show that the frequency of economic value for all realizations varies between 

6.7 M$ and 30.7 M$. This range of variation helps designers to make a better and lower 

risk decision under different conditions. 

1.Introduction 

The usage of the term “risk” as a synonym for 

uncertainty is not right because its definitions are 

not the same. Ross [1] has stated that the risk (or 

chance) can be described as the probability that a 

discrete event will or will not occur. The risk is 

denoted by a single probability estimation. In 

contrast, uncertainty denotes the inability to 

estimate a value exactly. Uncertainty can be 

denoted by a continuous distribution that defines a 

range of estimates and the likelihood of 

occurrence of an event. Therefore, the risk and 

uncertainty should be understood and managed 

during all stages of an investment such as a 

mining project.  

In today’s mining operations, particularly in 

underground mining, the kriging method is the 

most dominant approach used to estimate ore 

resources. Hence, this technique is used to 

produce a block model and the subsequent 

operations such as determination of underground 

stopes and production scheduling. On the other 

hand, this method leads the mining operations to 

several shortcomings, i.e. (i) a single NPV can be 

obtained, (ii) the uncertainty in numerous 

responses such as NPV, dilution, production rate, 

etc. is not accessible through this method, and (iii) 

the quantification of the influence of the 

smoothing effect of the kriging method is too 

problematic. In a mining project, the sources of 

uncertainty such as ore reserve, metal grade 

distribution, and metal price must be thoroughly 

examined to make a better decision; otherwise, 

the project may face serious financial calamities. 

A number of gold mines could not produce pre-
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defined gold from 1983 to 1987 because of 

inaccurately estimated grades [2]. A majority of 

mining companies failed due to overestimation of 

ore grade in the South African mines [3].  

In order to resolve the mentioned problems, 

conditional simulation with considering 

uncertainty during ore-body grade estimation can 

be useful and increase the accuracy of the project 

design [4, 5]. A number of researchers have tried 

to determine the influence of grade uncertainty in 

the open-pit mine limit and production planning. 

Smith and Dimitrakopoulos [6], and Kumral and 

Dowd [7] have studied the impact of geological 

uncertainty on open-pit short-term production 

scheduling using conditional simulation. Ramazan 

and Dimitrakopoulos [8] have used the integrated 

conditional simulation and Stochastic Integer 

Programming (SIP) to maximize Net Present 

Value (NPV) for a long-term production 

scheduling. Koushavand et al. [9] have presented 

a Mixed Integer Linear Programming (MILP) 

formulation, considering grade uncertainty to 

obtain maximum NPV during long-term mine 

planning in northern Alberta. Many researchers 

have studied the influence of grade uncertainty in 

open-pit mines [10-13]. Nevertheless, a few 

works have been carried out related to the impact 

of grade uncertainty on underground mining limit 

and production scheduling. Gerico and 

Dimitrakopoulos [14, 15] have developed a 

probabilistic mixed integer programming (MIP) 

formulation to determine the size and location of 

stopes and pillars in sub-level stope mines under 

pre-defined risks and grade uncertainties. Both the 

open-pit and underground mine plannings using 

only one of the estimation methods for the entire 

ore-body may cause a serious deviation from the 

target. In this paper, in the first step, a 

comprehensive review of the underground stope 

layout methods and algorithms are presented. 

Then a new heuristic algorithm and a computer 

program are introduced. After that, an 

underground copper deposit is selected in order to 

determine the stope boundaries under grade 

uncertainty using geostatistical analysis and 

conditional simulation. 

2.Underground Stope Layout Determination 

In 1977, the first algorithm was developed by 

Riddle [16] for optimization of underground 

mining limit to design the block-cave mine layout. 

Putting some blocks with negative values as 

pillars to provide separate stopes is the main 

difference between this algorithm and Dynamic 

Programming (DP). The algorithm was written in 

FORTRAN and implemented on hypothetical 

economic block models in a a 2D space. Deraisme 

et al. [17] have implemented the downstream 

geostatistical approach in a uranium underground 

mine. They used large panels considering non-

linear geostatistics to analyze the grades of mining 

units. This method is able to consider slope angle, 

which is ignored in most of the proposed methods. 

Octree division algorithm was developed by 

Cheimanoff et al. [18]. The algorithm identifies 

mineable volumes using the data obtained by 

drillholes, geostatistical data, and mineral forms 

in a 3D space. This algorithm is contained in the 

GEOCAD [19] package but its implementation on 

a well-known block model has not been reported. 

The main drawback of this algorithm is that the 

minimum dimensions of blocks, which have a 

lower amount of minerals, are included in the 

final limit. This issue affects the overall profit of 

an operation due to the existence of several waste 

blocks [20]. The floating stope method has been 

developed by Alford [21]. During the process of 

this algorithm, a stope with pre-defined 

dimensions is floated within the block model in a 

3D space, and finally, the underground mining 

limit can be generated based on an objective 

function, which can be defined as the highest 

tonnage, economic value or ore grade. This 

algorithm is available on the CAE Studio 

DATAMINE [22] software, and the optimality is 

not guaranteed due to the existing overlapping 

stopes in the area. Ovnic and Young [23] have 

developed the Branch and Bound technique using 

the Mixed Integer Programming (MIP) technique 

in combination with the piecewise linear function 

as a method for stope design. In this algorithm, 

the boundaries of extraction stopes are determined 

by exploring the starting and ending points in a 

defined row. There are a lot of softwares available 

to solve the mathematical problems, especially the 

branch and bound techniques including the 

LINGO [24], GAMS [25], and CPLEX packages 

[26]. Mirzaeian and Ataee-pour [27] have used 

the GAMS software tool to optimize the 

underground stope geometry on numerical 

examples. In addition, the MPS [28] software 

usage for stope layout optimization in the Pea 

Ridge iron ore mine has been reported in 1995 

[23]. Ataee-pour [29] has proposed the maximum 

value neighborhood (MVN) algorithm. The 

fundamentals and basic concepts of this algorithm 

are the same as the floating stope method. This 

method uses the concept of the neighborhood with 

the highest value of production. However, this 

algorithm that eliminates the drawbacks of the 
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floating stope method and has been considered as 

one of the most popular methods in underground 

mining industry has two main drawbacks:  (i) 

Moving the starting location of evaluation alters 

the set of stope layouts generated from the same 

orebody, (ii) Blocks that are examined earlier in 

the process are given a preferential treatment. 

Ataee-pour [30] has developed a computer 

program named SLO1  for stope limit optimization 

in a 3D space. In order to improve and facilitate 

the procedure of the floating stope method, 

Cawrse [31] has suggested the Multiple Passes 

Floating Stope Process (MPFSP). In this method, 

the input data including the maximum grades, cut-

off grade, and maximum tonnage of wastes are 

defined by the user. Then after producing several 

stopes, the final statistical results are saved in an 

excel format (CSV). However, selection of the 

final stopes has been facilitated by this method, 

although it does not guarantee the optimum limit. 

Jalali and Ataee-pour [32], and Jalali et al. [33, 

34] have proposed a 2D and mathematical logic 

algorithm called OLIPS2. In this algorithm, the 

dynamic programming (DP) method is used to 

find the underground optimum limit. One of the 

most important characteristics of this algorithm is 

that it is run on a special block economic value 

called integrated probable ptope model. Based on 

this algorithm, a computer program called SBO3 

has been developed and validated by hypothetical 

models. In addition to the OLIPS algorithm, the 

GOUMA4 algorithm has been presented by Jalali 

et al. [35]. This algorithm can be implemented for 

a variable value economic model (VVEM), and is 

able to solve large-scale problems in a 2D space. 

They introduced a computer program named 

GOUMA-CP, designed in the C++ language, and 

applied to optimize the underground mining area 

of a gold mine in Australia. Grieco and 

Dimitrakopoulos [36] have developed a 

probabilistic MIP model to determine the stope 

and pillar design based on the geological 

uncertainty and pre-defined risks. In this method, 

at first, the block model is divided into several 

layers. Next, each layer is separated into several 

panels and rings. Every ring is defined as a binary 

variable in mixed integer programming, whose 

objective function is to maximize  the metal 

content in an entire pre-defined time period. In 

addition, the solution time of this method depends 

                                                      
1 Stope Limit Optimizer 
2 Optimum Limit Integrated Probable Stope 
3 Stope Boundary Optimizer 
4 Global Optimization for Underground Mining Area 

on the number of variables in the complex mixed 

integer programming model, which can limit its 

application in a real industry operation [37]. Jalali 

and Hosseini [38] have introduced a greedy 

algorithm to determine the optimal stope layout. 

The algorithm’s logic follows a searching method 

on a graph model corresponding to an economic 

block model, and is solved using Dijkstra [39], as 

a powerful solver. Topal and Sens [40] have 

proposed a methodology to find the best and 

profitable stope layout for an entire block model 

using the MATLAB software considering the 

economic values of the blocks. The main 

disadvantage of their algorithm was the 

elimination of several stopes with lower values, 

while removing the overlapping stopes. Bai et al. 

[41] have proposed an algorithm based on the 

graph theory to optimize the underground mining 

limits. This method is only applicable to the sub-

level stoping mines. In this method, a raise is 

defined and each block can be expressed in the 

cylindrical system (r, θ, z). The final result can be 

obtained by establishing the best position of the 

raise and vertical extent. The main defect of their 

algorithm is that it is limited to the underground 

mines, which are extracted by the sub-level 

stoping method. Sandanayake et al. [42, 43] have 

proposed an algorithm based on heuristics 

considering various possible stopes to optimize 

the underground stope layout. The results of their 

implementation on a real copper deposit showed 

10.7% more valuable solution than the MVN 

algorithm. Nikbin et al. [44] have proposed a new 

hybrid algorithm, which is a combination of the 

dynamic programming and the greedy algorithm. 

They implemented their algorithm on an actual 

case study. The results obtained by the new 

algorithm was compared with the previous 

algorithms including the floating stope, MVN, 

and greedy algorithm. Even though their proposed 

algorithm is not able to provide a truly optimum 

solution, it has been able to find a higher profit 

compared to the mentioned algorithms. 

3.Proposed Heuristic Algorithm 

In order to determine the underground stope 

layout, a heuristic algorithm developed by 

Sandanayake et al. [42] was utilized. In order to 

facilitate the implementation of this algorithm 

with some strategies, which will be explained in 

the following, a user-friendly interface (UI) 

computer program (Fig. 1) was developed in the 

C# programming language [45] named Stope 

Layout Optimizer 3D (SLO3D) [46]. This 

computer program has three main steps:  
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1. Creating the Block Economic Value 

(BEV) 

2. Generating the possible stopes 

3. Determination of the final underground 

stope layout 

In the following, a comprehensive explanation of 

SLO3D is presented.  

Table 1. Summary of the proposed algorithms in the underground stope layout optimization. 

Year Author Algorithm Mining Method 
Mathematical 

Formulation 
Dimension 

(1997) Riddle [16] Dynamic Programming 

(DP) 

Block caving Yes 2D 

(1984) Deraisme et al. [17] Geostatistical Approach Sub-level Stoping 

Cut & Fill 

No 2D 

(1989) Cheimanoff et al. [18] Octree Division All No 3D 

(1995) Alford [21] Floating Stope All No 3D 

(1999) Ovanic & Young [23] Branch and Bound All Yes 1D 

(2000) Ataee-pour [20] Maximum Value 

Neighborhood 

All No 3D 

(2001) Cawrse [31] Multiple Pass Floating 

Stope Process 

All No 3D 

(2007) jalali et al. [33] OLIPS All yes 2D 

(2007) Grieco and 

Dimitrakopoulos [36] 

Mixed Integer 

Programming 

Sub-level Stoping Yes 2D 

(2008) Manchuk and Deutsch [47] Simulated Annealing Sub-level Stoping 

Cut & Fill 

No 3D 

(2009) Jalali and Hosseini [38] Greedy All Yes 2D 

(2010) Topal and Sens [40] Heuristic All No 3D 

(2013) Bia et al. [41] Network Flow Method Sub-level Stoping Yes 3D 

(2015) Sandanayake et al. [42] Heuristic All No 3D 

(2016) Jalali et al. [35] GOUMA All Yes 2D 

(2018) Nikbin et al. [44] DP and Greedy All Yes 3D 

(1997) Riddle [16] Dynamic Programming 

(DP) 

Block caving Yes 2D 

 
Fig. 1. Stope Layout Optimizer (SLO3D). 

3.1.Creating Block Economic Value 

A grade block model with regularised dimension 

as the input file must be created in the Microsoft 

Excel format before running the program. The 

input file structure consists of seven major 

columns similar to a spreadsheet shown in Fig. 2 

including the coordinate of a regularised block 

(XC, YC, and ZC), block dimension (XINC, 

YINC, and ZINC), grade of a block (percent or 

gram per ton), value of a block (BEV ($)), density 
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(ton/m3), total weight, and metal weight of every 

block. After importing the input file by clicking 

on the specified button named ‘Import Data’, the 

user should import the economic factors such as 

the mining cost (Cm), processing cost (Cp), 

refining cost (R), metal price (P), grade (g), 

weight of a block (T), and recovery (Y). Then 

with the defined cut-off grade, the blocks below 

the cut-off grade are termed as the waste blocks. 

In the “Grade” combo box, there are two options 

for definition of ore grade, in which the first one 

is related to metals where the grade is defined in 

percent (%) and the second one is for metals that 

are defined as grams/tonne. After clicking on the 

“Calculate BEV” button, the grade block model is 

converted into an economic model based on 

Equation 1 and the number of ore and waste 

blocks with consideration given to the cut-off 

grade all reported. 

 

    m pP R G Y C C T       
(1) 

 

 
Fig. 2. Input file structure before running program (Excel format). 

3.2. Generating possible stopes 

In the second step, the algorithm produces all 

possible stopes for an entire ore body. By clicking 

on the “Generate” button, the algorithm specifies 

the origin of the economic block model. Then 

assuming that the block increases in the size 

increment in the X, Y, and Z directions as the 

stope dimension parameters, the last stope block 

is determined. The constructed stope is floated 

through the economic model, and all possible 

stopes are generated based on the conditions 

shown in Equations 2 and 3 [42]. 

 (i′, j′, k′) ≤ (i , j , k) ≤ (i′′, j′′,  k′′) 
(2) 

 

(i′ ≤ imax  , j′ ≤ jmax  , k′ ≤ kmax) 
(3) 

 

where (i′ j′ k′) and (i′′ j′′ k′′) are the orogin and last 

block of a stope, respectively. (imax jmax kmax), 

as shown in Equation 3, is the maximum stope 

block (i j k) within the economic model. Finally, 

the average grade and the economic value of each 

stope are calculated. The output file structure 

consists of seven major columns including (Fig. 

3): Stope ID, Stope Dimension in the X, Y, and Z 

directions (XINC, YINC, and ZINC), Stope Grade 

(percent), Stope Economic Value (SEV), Total 

Weight, Metal Weight and identifier of origin, and 

the last block of each possible stope. Finally, 

based on the SEV column, the number of positive 

and negative stopes are reported in SLO3D. 

 
Fig. 3. Output file structure after generating all possible stopes. 

3.3. Determination of final underground stope 

layout 

In the first step, all possible stopes with positive 

economic values, generated in the previous step, 

are selected and imported as an input file for this 

step. In order to determine the optimum location 

of the underground stopes, all possible sets of the 

non-overlapping stopes are generated. Two major 

null families of sets ST and SE are created. ST is 

all possible sets of non-overlapping stopes that are 

generated during the algorithm and SE is a unique 

derived set of ST. During the algorithm process, 

each stope is compared with all stopes within any 

set of non-overlapping stopes (SP). If the 

imported stope does not overlap with other stopes, 

all stopes are combined and a new set of non-

overlapping stopes is created (SPnew). While the 

algorithm is iterated once, all sets are inserted in a 

new set called SO. This process is iterated until all 

positive stopes participate in the algorithm. 

Finally, the highest value of the non-overlapping 

stopes is selected as the optimum solution. The 

steps of this algorithm can be found in Fig. 4.   
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In large-scale problems, the sets of non-

overlapping stopes (SP) increase dramatically. 

Thus the solution time increases as well. Three 

strategies are added to the presented algorithm in 

order to overcome this problem. The first strategy 

is the sorting of all sets (ST members) according to 

their economic value to the lowest value, and 

selects a percentage of the sorted collection. The 

major drawback of the first strategy is removing 

some stope sets with a low economic value, while 

this strategy discards the possibility of a 

combination of removed sets and other stopes that 

may be a new set with a higher total value. Due to 

this disadvantage, two strategies with probabilistic 

backgrounds are proposed and added to this 

algorithm. These two strategies are: 

• Selecting a percentage of ST members randomly 

and frequently.  

• Selecting a percentage of ST members based on 

the number of stopes in each set. 

In SLO3D, these strategies are covered in the 

“selection type” combo box. If the user does not 

choose any condition, the algorithm will analyze 

all possible sets of stopes, which can increase the 

solution time in very large problems. On the other 

hand, for instance, by choosing the first strategy 

in this section, the number of sets (ST members) 

can be varied based on the economic value of 

each set. To select the number of stopes, the user 

can define the percentage using the “% of stopes”. 

Finally, the total economic value of the 

underground mining layout and identification of 

stopes, and the entire underground layout are 

reported.   

4.Simulation Background 

Numerous conventional methods are available for 

estimation of the regional variable such as ore 

grade by the least square based methods. Ordinary 

kriging (OK) and simple kriging (SK) are 

developed in this manner. The major drawback 

and inaccuracy of these methods is bias 

conditionality due to some underestimation and 

overestimation [48]. Unlike these approaches, the 

geostatistical simulation methods produce models 

on a detailed scale to simulate the spatial and 

statistical characteristics of an ore deposit [49]. 

Furthermore, the geostatistical simulation 

methods do not suffer from the smoothing effect 

and aim to model the in situ spatial variabilities. 

Therefore, these methods can be used for 

uncertainty analysis and risk quantification [50].  

Among the simulation methods, Sequential 

Gaussian Simulation (SGS) is the most widely 

used and efficient method for simulating a 

multivariable field in the mining industry [51-54]. 

The simplicity and flexibility of this algorithm are 

the most important reasons that make it popular 

[55, 56]. In the SGS approach, grade simulation is 

conducted over the Gaussian transformation of the 

measurements. Therefore, any simulated grade 

value is conditional on the regional data and every 

location is randomly selected from the normal 

conditional cumulative distribution defined by 

kriging mean and variance. All simulated grades 

are dependent upon the previously simulated 

grade values. Finally, all simulated values are 

back-transformed to the original data. The basic 

steps in the SGS algorithm are listed below [57]: 

1. Calculate statistical and histograms of 

parameters. 

2. Transform the data to a Gaussian 

distribution. 

3. Compute and model variogram of 

transformed data. 

4. Define the coordinates of blocks. 

5. Choose a random path. 

6. Estimating a value using the kriging 

method (known and simulated). 

7. Draw a value at random from the 

Gaussian distribution, which is known as 

the simulated value. 

8. Proceed to the next node and simulate 

sequentially.  

9. Repeat steps till all nodes have been 

simulated. 

10. Back-transform all simulated values. 

5.Case Study 

In order to incorporate the grade risk 

quantification in the determination of 

underground stope layout, a real copper deposit, 

located in the north-west of the Zahedan Province 

(Iran) was selected. The data on this area was 

obtained from 35 drill hole samples. The core logs 

contain the assay, geological description, azimuth, 

and dips of boreholes. The assay data of these 

boreholes shows the main metal with an average 

of 0.57% Cu and 5.75% Cu as the high grade. In 

this work, a part of this area (a vein in the N23˚W 

direction) that has enough exploration data was 

considered as the main studied area. This area is a 

vein with a thickness of 20 m with a spanning 400 

m in the longitude direction and reaching 100 m 

in the vertical direction. The datamine software 

was used to generate the ore body model.  
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Create SP   = {} ; 

SP   = {S};

Merge SP and SP  if S & S  

doesn t overlap 

SP new = SP ᴜ SP 

Create SP    = {} ; 

SP    = {S}

Are all SP members 

participated?

Are all stopes members 

participated?

End

Choosing a strategy based on 

large and complexity of 

problem

 Participating of all ST 

members.  

 selecting a percentage of 

ST members based on  

their economic values.

 selecting a percentage of 

ST members randomly.

 selecting a percentage of 

ST members  according to 

 descending the number 

of stopes in every set.  

Yes

Yes

NO

NO

 all possible stopes 

with positive value

Create ST 

ST = {}

For each positive stope 

(Stope ID)

For each SP € ST  

Create SE 

SE = {}

Add SP,SP &SP   to SE 

SE = {SP,SP &SP  }

Update the economic value 

for each SP,SP &SP   

Add SE To SO 

SO = SE 

Select ing the high value stope set as  

optimum solution

Add SO To ST 

ST = SO 

Start

 
Fig. 4. Revised stope layout optimization algorithm after Sandanayake et al. [42]. 
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6.Geostatistical Modeling 

6.1. Variogram Modeling 

Variogram modeling and determination of 

anisotropic ellipsoid are the primary factors 

involved in the geostatistical analysis. In the first 

step, statistical analysis was carried out for grade 

data. This analysis shows that the grade 

distribution in the studied area has a significant 

positive skewness as the histogram is skewed to 

the right (Fig. 5a). Table 2 shows the statistical 

parameters of the exploration data after applying a 

compositing length of 5 m. 

 
 

Table 2. Summary statistics of the composite data. 

Number of 

samples 

Average grade 

(Cu %) 

Min. 

(%) 

Max. 

(%) 
Median Variance 

Std. 

Dev. 
Kurtosis Skewness 

762 0.562 0.0005 5.75 0.161 0.911 0.954 11.842 3.153 

 

Most statistical methods require assuming 

normality of data. Thus only the dataset with a 

normal distribution can be used to perform 

variogram modeling and simulation; otherwise, 

the geostatistical calculation will have systematic 

errors. In this work, using the S-GeMS [58] 

software, the row dataset is transformed to a 

normal distribution with the variance of one and 

the mean value of zero (Fig. 5b). Table 3 shows 

the statistical parameters of the exploration data 

after normalization. Variography was carried out 

to provide the copper variability of the area. In 

order to identify the anisotropy axes, the 

directional variograms were drawn. Due to the 

different range of variograms and equal sill, the 

anisotropy is geometric. Variograms for the 

directions of 30˚, 90˚, and 120˚ were performed 

and studied carefully. Fig. 6 shows the directional 

variograms of the copper grade in different 

directions. The red points and the solid line 

represent the experimental and the theoretical 

variograms, respectively. According to the 

variography results, anisotropy is in the directions 

of N30˚E and N60˚W. Table 4 shows the 

p a r a m e t e r s  o f  v a r i o g r a m  m o d e l i n g . 

 
Table 3. Summary statistics of the normalized data. 

Number of 

samples 
Min. (%) Max. (%) Mean Std. Dev. 

762 -3.213 3.213 0.00 1.00 

 

Table 4. Parameters of spherical model. 

Variogram 
Model 

Nugget 

effect 
Sill Range (m) 

Azimuth Dip Tolerance 

30 70 15 

Spherical 

0.2 0.8 69 

120 70 15 0.4 0.5 54 

Vertical 90 90 0.2 0.79 60 

Fig. 5. Histogram of composite copper data; (a) original data, (b) normalized data. 
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6.2. Copper Value Simulation 

In the second step, a 3D block model of the 

studied area was constructed. Since the sequential 

gaussian simulation is most widely used for 

obtaining grade distribution and considering that 

50 realizations are enough to reach a reliable 

result [36], this kind of simulation was used to 

produce 50 probable copper values for each unit 

of the entire grid block model. Fig. 7 shows the 

horizontal plan of four randomly selected 

realizations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Realization #4 

Realization #29 Realization #46 

Realization #18 

Fig. 7. Horizontal plan of four randomly selected realizations. 

Fig. 6. Directional variograms of copper grade. 
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6.3. Validation of Simulation Results 

Validation of the simulated realizations must be 

undertaken by reproduction of histograms and 

variogram models, and it should be very similar to 

the original data features [59]. Fig. 8 shows the 

matching of histogram reproduction of a 

randomly chosen from 50 realizations. Also to 

check the simulation performance, the variograms 

for 5 realizations were reproduced and compared 

with the variogram of the original dataset (Fig. 9). 

The results obtained show that all realizations 

reproduce the histograms and variograms 

reasonably well. 

 
Fig. 8. Histogram reproduction, randomly selected from 50 realizations. 

 
Fig. 9. Empirical variograms for real data and five randomly selected realizations. 

6.4. Grade-Tonnage Curves 

One of the important factors involved for the 

investment of a mining project is a determination 

of risk in grade-tonnage curves that can be 

achieved through geostatistical simulation. By 

comparing these estimation and simulation 

curves,  the effect of the uncertainty on the 

estimated model and average grade will be 

observed. Fig. 10 shows the plotted grade-tonnage 

curves of all the 50 simulated models and kriging 

estimation method with different cut-off grades. 

The ore reserve tonnage is higher at lower cut-off 

grades, and the tonnage obtained by the kriging 

method is in the middle of all simulated curves 

that can affect the economy of the mining project. 

Therefore, the related risk is more critical at lower 

grades. Since in this work the cut-off grade was 

0.52%, the frequency of the ore reserve for all the 

50 realizations was drawn (Fig. 11). Based on this 

distribution, the ore reserve is between 453,000 

and 799,000 tonnes with 95% confidential level. 

The ore reserve in the kriging method is 644,525 

tonnes. 
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Fig. 10. Grade-tonnage curves for 50 realizations. 

 
Fig. 11. Ore reserve distribution for SGS-real data (cut-off = 0.52%). 

7.Determining Optimum Stope Layout 

The mining method in this ore body is 

longitudinal stoping, a method similar to the sub-

level stoping method. In longitudinal stoping, the 

direction of mining is in the same way as the sub-

level stoping along the strike of the orebody 

(longitudinal direction). This method is designed 

for ore bodies with a thickness in the range of 

circa 5-20 m [60]. Determination of stope 

dimension in these methods in most cases can be 

achieved by designing the stopes having high 

vertical and short horizontal dimensions or stopes 

having short vertical and long horizontal 

dimensions [61]. For this work, the stope 

dimensions are considered to be 50×20×25 m 

(10×4×5 m blocks in the X,Y,Z direction). Then 

considering the economic factors given in Table 

5, all 50 realizations and kriging model were 

converted to block economic value incorporating 

copper grades. Then 1136 possible stopes were 

generated for each model. After that, according to 

the proposed algorithm, the optimum layout, 

average grade, and metal content of all 

realizations, and the kriging model were obtained. 

For the kriging model, 24 stopes were obtained 

using the algorithm with a value of 15.6 M$, 

while this value for other two realizations 

(simulation 5 and simulation 17) was 14.7 M$ and 

21.8 M$, respectively.  

 

Table 5. Economic factors. 

Parameter Value 

Mining cost ($/tonne-ore) 20 

Processing cost ($/tonne-ore) 10 

Smelting and refining costs ($/tonne-metal) 90 

Copper price ($/tonne-metal) 6500 

Recovery (%) 90 

Cut-off (% Cu) 0.52 
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The economic value and metal content for each 

realization were calculated and studied carefully. 

Fig. 12 shows the frequency of economic value 

for all realizations. It can be observed that the 

value varies between 6.7 M$ and 30.7 M$. The 

blue dash line shows the value of the kriging 

model. Fig. 13 shows that according to the 

realizations, the minimum and maximum pure 

copper that can be extracted from the mine is 

between 5,227 and 13,583 tonnes, while this value 

for the kriging model is 8,971 tonnes. Moreover, 

in Table 6, details of the final underground limit 

for the realizations and kriging model are 

presented. 

According to the results obtained in this section, it 

can be concluded that a large precentage of 

underground mining limits on the Sequential 

Gaussian Conditional Simulation appoach 

generate a higher economic value as compared to 

the ordinary kriging. Hence, the results illustrate 

that ordinary kiriging based underground mine 

planning can produce misleading outputs, which 

can lead to unrealistic expectations of net present 

value along with mine production scheduling, and 

so on. Since the traditional kriging methods rely 

on a single ore model assumed to be real deposit 

in the underground being mined, it is not able to 

evaluate the uncertainty of economic and 

operational consequences of the underground 

stope layout. On the other hand, the simulation 

methods give a great oppurtunity to describe the 

distribution of ore grade in each one of the 

realizations and quantification of uncertainty. 

 

 
Fig. 12. The economic value frequency for all realizations and kriging model. 

 
Fig. 13. The metal content frequency for all realizations and kriging model. 
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Table 6. Details of underground mining limit for SGS simulations. 

Parameter 
SGS models 

Kriging model 
Min. Max. Average 

Average grade (%) 0.53 0.88 0.67 0.71 

Economic value (M$) 6.74 30.71 15.86 15.62 

Copper (tonne) 5257.6 13583.6 9250.4 8971.4 

No. of stopes 12 30 22 24 

 

8.Conclusion 

Determination of the underground stope layout 

and production scheduling are the most important 

issues in regard to the underground mining. 

Numerous researchers have reported the influence 

of grade and economic uncertainty in 

determination of ultimate open-pit limit and 

production planning. In contrast, a few efforts 

have been made regarding the underground mine 

design under the grade uncertainty condition, 

which is one of the major components of technical 

uncertainty that affects the variability of the 

project. In this work, in the first step, according to 

a new heuristic algorithm, a user-friendly 

computer program called Stope Layout Optimizer 

3D (SLO3D) was developed using the C# object-

oriented programming in order to incorporate the 

influence of grade variability in the final stope 

layout in a 3D space. Subsequently, a set of 

stochastic realizations were produced to solve a 

practical engineering concern in a real copper 

vein, located in the south-west of Iran. The results 

of this research work showed that the ore reserve 

obtained by the kriging method was 644,525 

tonnes, while this value varied between 453,000 

and 799,000 tonnes with 95% confidential level 

for realizations. The economic value of 

underground stopes for all realizations yielded a 

value between 6.7 M$ and 30.7 M$, and for the 

kriging model, it was 15.6 M$. The proposed 

methodology determined the underground stope 

layout over multiple geostatistical realizations 

rather than simply using geostatistical realizations 

in a post-processing framework to assess a layout 

based on a kriging model. According to the results 

obtained, it was observed that the performance of 

a mining project based on a single estimation 

method due to the inability to access uncertainty 

and risk quantification can influence the overall 

accuracy of the mine design and production 

planning, while simulation models obtained by 

geostatistical methods determined the range of 

possible values instead of introducing a definite 

and unique existing value. In this way, it is 

possible to examine the risks and compare with 

the single estimation model. In this research work, 

the effect of grade uncertainty on the 

determination of underground optimum limit was 

studied. 
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 چکیده:

 یاص ل یهااز مؤلف ه یک ی اری ع تی پروژه در نظر گرفته شوند. عدم قطع کیمرتبط با  یهاتیتمام عدم قطع دیبا یامکان سنج نییتع یبرا ،یمعدن یدر پروژه ها

 نی یتع یاست که به طور گسترده برا یمعتبر، روش کردیرو کیبه عنوان  ،یآمار نیزم یساز هی. شبگذاردیم ریپروژه تأث یریرپذییاست که بر تغ یفن تیعدم قطع

 ن هیبه یشده توسط محقق ان ب را جادیا یهاتمیمقاله، تمام الگور نی. در اردیگیمورد استفاده قرار م نیتخم یهاغلبه بر اشکالات روش یبرا سکیر لیتحل تیکم

 هیشده است. با استفاده از ش ب هیته یابتکار تمیالگور س( براساSLO3D)یوتریبرنامه کامپ کیشده است. پس از آن،  یبررس ینیرزمیز یمحدوده معدنکار یساز

 ییس اتته ش ده اس ت و ط را نه ا رانیا یواقع در جنوب غرب ینیرزمیمعدن مس ز کی یبرا نگیجیمدل کر کیو  یساز هیشب 50 ،یمتوال یگوس یشرط یساز

ب ه  یینه ا جیمقابل ه کن د. نت ا نگیجیبه طور موثر با ضعف مدل کر تواندیم یآمار نیزم یساز هیکه شب شودیها به صورت جداگانه انجام گرفت. مشاهده مکارگاه

ب ه طراا ان  راتیی دامنه تغ نیاست. ا ریدلار متغ ونیلیم 7/30دلار و  ونیلیم 7/6 نیدستاوردها ب هیکل یبرا یارزش اقتصاد یکه فراوان دهدیدست آمده نشان م

 .رندیبگ یکمتر سکیر ابردر بر یبهتر میمختلف تصم طیتا در شرا کندیکمک م

 SLO3D ،یابتکار تمیالگور ،یآمار نیزم یساز هیشب ار،یع تیعدم قطع ،ینیرزمیز یمعدنکار کلمات کلیدی:

 

 

 

 


