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Abstract 
This paper presents an innovative solution for estimating the proximate parameters of 
coal beds from the well-logs. To implement the solution, the C# programming language 
was used. The data from four exploratory boreholes was used in a case study to express 
the method and determine its accuracy. Then two boreholes were selected as the 
reference, namely the boreholes with available well-logging results and the proximate 
analysis data. The values of three well-logs were selected to be implemented in a system 
of equations that was solved, and the effect of each well-log on the estimated values of 
the proximate parameter was expressed as a coefficient called the effect factor. The 
coefficients were incorporated in an empirical relationship between the parameter and 
the three well-logs. To calculate the coefficients used for the most accurate estimation, a 
total of 22960 systems of equations were defined and solved for every three logs. As 
there was the possibility of 560 combinations for selecting three logs from all the 
available 16 logs, the three equation-three variable systems were solved more than 12 
million times. The programming methods were utilized to achieve the final results. The 
results of each system were tested for deviation of the estimated values of volatile 
matter, ash, and moisture, and the coefficients of the lowest deviation were accepted to 
be applied in the relation. Implementing this method for estimating the volatile matter 
resulted in an average deviation of 10.5%. The corresponding estimated values of the 
ash and moisture contents were 22% and 14%, respectively. 

1. Introduction 
In general, well-logging is the application of 
geophysical methods for exploratory boreholes. 
Although these methods are more common in oil 
and gas reservoir exploration, the utilization of 
some well-logging methods are common in 
mineral exploration, especially coal exploration. 
Coal beds, in comparison with other surrounding 
layers, are lower in gamma radiation and density. 
Therefore, the well-logging methods are widely 
used in coal exploration, and are based upon 
gamma radiation and density measurement, like 
gamma-gamma method along with the resistivity, 
sonic, and porosity measurement methods.  
Of course, the characteristics of coal beds vary 
from seam to seam. Even the parameters like 
moisture, ash content, and volatile matter may 

vary along a single coal layer extension. These 
parameters are often reported as the proximate or 
ultimate analysis. Proximate analysis is a broad 
one that determines the amount of moisture, 
volatile matter, fixed carbon, and ash. This 
analysis is the most fundamental one among all 
coal analyses, and is of great importance in the 
practical use of coal [1]. 
While a difference is expected between the values 
of well-logs for the coal beds and other layers, a 
steady and unchangeable log for the coal beds 
could not be expected. Surely, well-logs vary in 
coal beds according to the bed characteristics. 
Therefore, a conclusion for the coal characteristics 
could be drawn from the coal exploration well-
logs. In other words, the proximate parameters of 
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coal beds can be estimated from the geophysical 
well logs. 
It should be noted that the most accurate method 
available for approximating the parameters of coal 
beds is done through sampling and laboratory 
analysis, although there are some advantages in 
the application of well-logs for coal-bed 
parameter estimation such as: 

1. Consistency in the results of well-logging 
operations; unlike inevitable problems associated 
with core samples due to core washing-off and 
losing the sample, the well-logs could 
demonstrate the sample depth. 

2. The results are instantaneous [2]. 
3. It could sample a much larger volume of 

the material surrounding the borehole than the 
core sample, and therefore, provides better 
sampling statistics [2]. 

4. The cost of drilling open holes is less than 
that of the cored holes [2]. 
The idea of determining the characteristics of 
coal-beds according to the geophysical well-logs 
is not a new one. The relationship between the 
geophysical well-logs and coal-bed characteristics 
was examined in 1975 [3]. In 1981, a relationship 
between the two sets of well-logging and 
analysing data was tried to find [4]. The error 
factor in determining the coal-bed quality 
parameters according to the logs has been noticed 
as well [5]. While the correlation between the 
density logs and coal ash was confirmed, the 
effect of well-logging tools on the error of 
estimated amount of ash according to the values 
of gamma-gamma logs was examined [6]. During 
the last decade of the previous century, several 
related studies have been conducted by the 
researchers [7-9]. In another research work via 
ACARP (Australian Coal Industry’s Research 
Program) in 2007 [10], the effective tools and 
equipment for an accurate estimation of coal 
parameters according to the well-logs were 
reviewed. In 2007, the researchers attempted to 
characterize the moisture and gas contents of coal 
according to low-field NMR logs [11]. Souza et 
al. considered only the gamma and resistivity logs 
as the criteria for determining the coal quality 
parameters [12]. Density logs were applied to coal 
gas reservoir modelling thorough a case study 
[13]. Using geophysical well-logs for evaluation 
of the coal bed methane reservoirs has been 
studied [14, 15]. Accordingly, a study addressed a 
plug-in developed for correlation of coal beds 
based on identification of key beds using the  
well-logging data [16]. Moreover, the researchers 
have detected the coal beds and then examined 

their proximate parameters by a negative 
exponential function based on the gamma ray log 
[17]. In another work aimed at estimation of the 
proximate parameters using the logs, the coal beds 
were initially separated by the cluster analysis 
[18]. The petro-physical data in combination with 
the geochemical one have been used as the entry 
data of a fuzzy cluster algorithm with the output 
of rock mass classification [19]. During a recent 
study, a combination of advanced numerical and 
statistical methods has been used for interpreting 
coal lithotypes from geophysical wire-line logs. 
The study particularly aimed to discriminate 
between the bright and dull coals at similar 
densities [20]. Applying the multivariate 
regression method with implementing  
neural-fuzzy algorithms for estimating proximate 
parameters was significantly studied [21]. Finally, 
determining the rock strength from well-logging 
measurements is another solution for detecting 
layers’ conjunction and estimating coal layers’ 
characteristics [22, 23], since the mechanical rock 
properties could be modelled from rock features 
such as ash content, density, and acoustic 
velocities based on the well-logging tools [24]. 

2. Statement of problem 
The researchers have focused on the issue of 
proximate parameter estimation since the last 
decades of the past century. Although the value 
and importance of such estimations have always 
been identified, the errors related to the 
equipment, limited access to the exploratory 
information, and lack of advanced software for 
statistical analysis and modelling were the main 
restricting factors in the development of research 
works. From the beginning years of the present 
decade, and along with developments in methods 
and equipment of well-logging [25], information 
technology, more applicable software, and access 
to large databases via the web, further advanced 
research works have become possible. 
Deviation in the estimated values has often been 
an important issue for researchers. Also most of 
the studies were developed using estimations 
based on a single well-log, whereas considering 
the impact of the parameters on several logs 
together would be much more helpful [22, 26, 27]. 
For example, neutron well-logs are affected by 
volatile matter, and such logs could be used for 
the volatile matter value estimation. However, 
other logs such as the density and sonic logs 
might be affected by the volatile matter as well 
[1]. Therefore, using a combination of these logs 
could result in a more acceptable estimation. 



Yusefi & Ramazi/ Journal of Mining & Environment, Vol. 10, No. 3, 2019 

635 
 

In this paper, with the aim of applying three 
different logs in estimating the proximate 
parameters of coal beds and reducing the 
deviation, the impact of three well-logs on the 
estimation is presented. In other words, here, we 
have three well-logs, combined in the form of an 
empirical relationship. Estimating the parameters 
using the relationship leads to more accurate 
results. 

3. Methodology 
The main purpose of this article is to summarize 
the impact of three well-logs in estimating the 
proximate parameters in the form of an empirical 
relationship. For example, the impacts of the three 
logs density, neutron, and sonic on the estimation 
could be represented as follows: 

  .   .   .      N D TP X N X D X T c  (1) 

where P is the value of the parameters, N is the 
recorded value in neutron log, D is the recorded 
value in density log, T is the recorded value of 
sonic log, and XN, XD, and XT are the coefficients 
representing the impacts of the neutron, density, 
and sonic logs on the estimated value of the 
parameter, respectively. These coefficients are 
called the effect factors in this paper, where c is a 
constant, P is commonly expressed in percent, and 
the unit for log value, depending on the type of 
log, may be expressed in API units or a 
conversion to SI units. For calculating the effect 
factors, a system of equations was formed and 
solved, as follows: 
For a coal bed, with well-logging data and 
available analysis of the proximate parameters, it 
was undoubtedly possible to initialize the 
relationship (1) as an equation with three variables 
(if c was assumed to be 0) or four variables 
(where c was not 0). The effect factors were 
assumed as the variables. If the data was available 
for at least three coal beds, three of these 
equations could be expanded, and a system of 
linear equations with three variables could be 
summarized. The effect factors could be obtained 
by solving the system. However, each borehole 
drilling often crosses several coal beds. Therefore, 
in a coalfield, if information concerning the 
proximate parameter analysis and well-logging for 
a single (or more) borehole(s) was available, the 
borehole data could be considered as the initial 
reference for estimation, and for every parameter, 
some three- or four-variable system of equations 
would be formed. These boreholes are assumed as 
the reference boreholes. Thus there would be a 
system of equations containing three or four 

variables and a few equations, which are equal to 
the coal beds in number.  A general system of 
equations for m coal beds with 3 well-logs could 
be written as: 

1 1 1 1 1

2 2 2 2 2

    
    

 .        .         .         .       .
 .        .         .         .       .
 .        .         .         .       .

    

   
   

   

N D T

N D T

m N m D m T m m

N x D x T x c P
N x D x T x c P

N x D x T x c P

 (2) 

where xN, xD, and xT are the unknowns, and, here, 
they are the effect factors; Ni, Di, and Ti are the 
coefficients of the system, which, here, are the log 
values for coal beds; and P1, P2, …, Pm are the 
constant terms, where, here, they are the 
proximate analysed values of a parameter. It is 
usually expected that the number of equations is 
much greater than the number of unknowns. 
Therefore, a definite result for the variables is not 
expected, although the best-optimized result could 
be obtained.  
The best-optimized results were obtained by 
sequentially solving the combinations of Equation 
1 in the two different cases of c=0 and c≠0. The 
number of system of equations solved for the best 
results would be equal to C(n, r): 

  !,
!( )!




nC n r
r n r

 (3) 

where C(n,r) that is the number of different 
combinations of r equations can be chosen from a 
group of n. In this case, the variable r is the 
number of well-logs contributing in equation (2), 
and n would be the number of coal layers 
observed by well-logging. 
For the first case, the constant value in the 
equations is assumed to be zero (c=0) and r=3. 
Then three of the n equations would be selected to 
be solved in a three equation-three unknown 
system. The system was solved and the results 
obtained were tested, calculating Pi in the 
equations, which are different from the three 
selected ones. Certainly, there are some deviations 
in the calculated Pi values, in comparison with the 
main values for Pi. The deviation was recorded as 
the selected combination deviation. The process 
of selecting, solving, and deviation recording was 
repeated, while all the C(n,3) combinations of 
equations were solved against each other in a 
three equation-three unknown system. Ultimately, 
the final answer for the equation would be the 
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answer with the least recorded deviation. Thus the 
best optimized effect factors would be calculated. 
The second case was performed in a similar 
manner but the constant value was entered in the 
calculations (c≠0). Therefore, the combinations of 
four equation-four unknown systems would be 
solved. The number of combinations to be solved 
would be C(n,4). 
By solving the system of equations and finding 
the best-optimized results, the effect factors are 
found to be embedded in relationship (1). An 
empirical relationship between a parameter and 
well-logs was then obtained. It is worth 
mentioning that in the case of the presence of 
more than three well-logs, a combination of 3 
from number of logs would be available, and 
ultimately, Equation (2) could be created in 
C(nl,3) combinations, where nl is the number of 
available well-logs. 
The relationship could be used for estimating the 
parameter of coal beds in boreholes, where the 
core sampling analysis results were not available 
but well-logging was conducted. Figure 1 shows a 
flowchart of the above steps. 
Also utilizing the relationship for estimation is 
more accurate than the common estimation 
methods, which are based upon a correlation 
equation between the proximate parameters and a 
specific well-log.  
The explained method was programmatically 
performed and applied in the following case 
study. Application of the method and also its 
validation, in addition to deviations in the results, 
are discussed in the case study as well. 

4. Case study 
To apply the method, the exploratory data from 
Hunter Coalfield, near Manobolai area, New 
South Wales, Australia, was downloaded from the 
Geological Survey of NSW’ database. The Hunter 
Coalfield shown in Figure 2 lies west of the 
Newcastle Coalfield and east of the Western 
Coalfield, with the northern and southern 
boundaries defined by the geographic features and 
the western margin by the adjoining Western 
Coalfield. It occupies an area of 21 km2 towards 
the north-eastern margin of the Sydney Basin, and 
is cantered nominally over the catchment of the 

Hunter River. The coalfield extends for 
approximately 50 km north-west from Cessnock 
to Muswellbrook and a further 120 km north to 
Murrurundi [28]. 
There were 15 boreholes that were drilled at the 
area (Figure 3) in 2003. The proximate parameter 
analysis of core samples and well-logging data of 
four boreholes were elicited, and the boreholes 
numbers 7 and 1 were selected as the reference 
boreholes. The well-logging methods utilized in 
these boreholes were Natural Gamma, Long 
Spaced Density, Short Spaced, Density, Caliper, 
Multi-Channel Sonic, Neutron, Resistivity, Dip 
meter, Deviation, and ALT Scanner [29]. The data 
for all well-logs are available in the Wireline log 
format (LAS) files. Also the proximate analysis of 
the core samples from the boreholes including ash 
content, moisture, and volatile-matter, on air-dried 
bases is thoroughly provided in the related reports. 
It is noteworthy to mention that the coal samples 
could be analysed on the basis of ‘as received’ 
basis (a.r.), ‘air-dried’ basis (a.d.b.), ‘dry’ basis 
(dry), ‘dry ash-free’ basis (d.a.f.), and ‘dry, 
mineral matter-free’ basis (d.m.m.f.). According 
to the Borehole completion reports [29], the 
proximate parameters were analysed on an  
air-dried basis, and that is why in this paper, we 
ignored the fixed carbon estimation. The fixed 
carbon content of coal is that carbon found in the 
residue remaining after the volatile matter has 
been liberated. Fixed carbon is not determined 
directly but is the difference, in an air-dried coal, 
between the total percentages of the other 
components, which are moisture, ash, and volatile 
matter, and 100% [1]. 
The depth of the reference boreholes is 410.86 m 
for borehole number 7 (DDH7) and 212.68 m for 
borehole number 1 (DHH1). In DDH7, core 
sampling was started from the depth of 9.20 
downwards. The depth for core sampling was 
74.20 for the next reference borehole. In 
summary, there were 42 coal beds crossed by the 
core sampling path. Coal beds' depth and 
proximate parameters were retrieved from the 
corresponding reports [29] and summarized in 
Table 1. 
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Figure 1. The process flowchart of calculating the effect factor including selecting equations, solving the system 
of equation, and deviation recording to find the least deviated results. As the effect factors were calculated, it 

would be possible to use the mentioned logs and the related effect factors for estimating the proximate parameter 
in a borehole with just the well-logging data available. 
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Figure 2. The Sydney-Gunnedah Basin and its recognized coalfields. 

 

 
Figure 3. Location of the boreholes and studied area within NSW, Australia. 
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Table 1. Proximate analysis of core samples, boreholes number 1 and 7. Manobolai, Hunter Coalfield, NSW, 
where D is Relative Density in g/cm3, and M, A, VM, FC are relatively moisture, ash content, volatile matter, and 

fixed carbon of coal bed, in percent [29]. 
BH Basin Depth from Depth to D M A VM FC 

DDH1 Fassifern (lower) 135.93 136.025 1.49 5.0 19.1 25.6 50.3 
DDH1 Fassifern (lower) 136.055 136.715 1.58 4.4 23.2 30.4 42.0 
DDH1 Fassifern (lower) 136.825 137.15 1.44 5.2 15.9 25.4 53.5 
DDH1 Fassifern (lower) 137.15 137.25 1.64 6.0 42.2 21.9 29.9 
DDH1 Fassifern (lower) 137.31 137.47 1.60 6.1 33.2 25.0 35.7 
DDH1 Fassifern (lower) 137.47 138.63 1.52 5.0 21.6 25.3 48.1 
DDH1 Fassifern (lower) 138.685 138.935 1.62 4.8 36.8 21.4 37.0 
DDH1 ?Austra|asian 230.77 231.69 1.56 3.8 35.4 23.8 37.0 
DDH1 ?Austra|asian 231.825 232.625 1.58 4.0 35.0 24.6 36.4 
DDH1 ?Montrose 232.94 233.255 1.70 3.2 48.7 22.6 25.5 
DDH1 ?Montrose 233.325 233.56 1.47 3.9 28.2 30.2 37.7 
DDH1 ?Montrose 233.625 234.32 1.54 4.0 31.5 26.5 38.0 
DDH1 ?Montrose 234.32 234.585 1.54 4.5 32.8 27.0 35.7 
DDH1 ?Montrose 234.585 234.66 1.47 4.4 24.2 28.6 42.8 
DDH1 ?Montrose 234.66 234.88 1.56 4.4 33.4 26.0 36.2 
DDH1 ?Montrose 234.88 235.395 1.48 5.0 23.1 28.8 43.1 
DDH1 ?WaveHi|| 235.77 236.035 1.55 4.2 31.4 26.5 37.9 
DDH1 ?WaveHill 236.035 236.315 1.73 3.6 47.2 21.2 28.0 
DDH1 ?WaveHi|| 236.395 236.64 1.57 4.4 31.7 25.2 38.7 
DDH1 ?Dud|ey 278.055 278.49 1.51 4.8 24.8 29.6 40.8 
DDH1 ?Dud|ey 278.49 278.8 1.42 4.4 15.0 34.7 45.9 
DDH1 Whybrow 335.71 336.615 1.49 4.2 23.2 30.4 42.2 
DDH1 Whybrow 336.93 337.69 1.46 4.6 22.0 29.8 43.6 
DDH1 ?Wambo 357.405 357.63 1.83 3.4 49.9 19.0 27.7 
DDH1 ?Wambo 357.63 358.51 1.49 5.4 23.4 29.9 41.3 
DDH1 ?Wambo 358.6 358.67 1.40 6.0 15.6 29.2 49.2 
DDH1 ?Wambo 358.67 358.81 1.44 4.6 20.7 31.4 43.3 
DDH1 ?Whynot 392.985 393.52 1.45 4.0 21.1 31.8 43.1 
DDH1 ?Whynot 393.52 393.59 1.50 3.8 27.4 30.6 38.2 
DDH1 ?Whynot 393.59 393.89 1.77 3.8 46.2 24.8 25.2 
DDH1 ?Whynot 393.89 394.605 1.41 4.0 13.6 31.6 50.8 
DDH1 ?Whynot 394.605 394.62 1.47 3.8 27.2 31.4 37.6 
DDH7 GreatNorthern 91.565 91.935 1.64 7.0 37.8 17.8 37.4 
DDH7 GreatNorthern 91.935 92.55 1.41 7.6 11.4 25.6 55.4 
DDH7 Fassifern 102.65 103.43 1.56 6.7 29.0 19.8 44.5 
DDH7 Fassifern 103.62 104.195 1.50 7.2 24.7 22.8 45.3 
DDH7 Fassifern 104.62 104.785 1.60 6.6 30.6 22.6 40.2 
DDH7 Fassifern 104.785 105.77 1.45 6.9 17.0 25.0 51.1 
DDH7 Fassifern 106.44 106.765 1.51 6.6 23.8 24.6 45.0 
DDH7 Fassifern 106.78 107.03 1.50 7.2 22.5 25.3 45.0 
DDH7 Fassifern 107.07 107.48 1.51 7.2 23.4 23.3 46.1 
DDH7 Fassifern 107.61 108.49 1.78 5.8 48.7 17.8 27.7 

 
Per each well-log, and depending on each coal bed 
thickness and the speed of well-logging probe, 
there are a few recorded numbers. To define a 
single number as the log value for each coal bed, 
the recorded values were averaged. For example, 
the values for Gamma from Density Tool log 
(GRDE), Compensated Density log (CODE), and 
Long Spaced Density log (LSDU) for each coal 
bed in DDH7 were averaged, as given in Table 2. 
The values for the other logs were averaged in a 
similar manner and defined for coal beds. Thus 
Table 2 was formed for all 16 well-logs of the 
reference boreholes and referring to the two tables 
1 and 2, three different logs were selected to be 
implemented in the system of equations. To select 

the mentioned logs, the programming methods 
were used. All well-logs, with data recorded as 
LAS files, were loaded using the program code. 
The codeselected every three logs to create a three 
equation-three unknown system. For each created 
system, there were three unknowns that were the 
coefficient effects of the well-logs estimated from 
one of the parameters, for instance, volatile matter. 
The system coefficients are values of the selected 
logs, and the answers are the volatile matter values 
obtained from the proximate analysis results of 
core samples in the reference boreholes. The code 
continued running, while all the well-loges were 
involved with each other in the equations systems. 
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Table 2. Average of some well-log values, extracted from the LAS log file, borehole number 1. Manobolai, 
Hunter Coalfield, NSW [30]. GRDE is the values of Gamma from Density Tool log value (in API units), Code is 
Compensated Density log value (in g/cm3), and LSDU is Long Spaced Density log value (in API units) for each 

coal bed in DDH7. 
DEPT Min (.M) DEPT Max (.M) GRDE Ave (.GAPI) CODE Ave (.G/C3) LSDU Ave (.SDU) 

135.93 136.02 156.765 2.215 1327.74 
136.06 136.71 70.5753 1.63015 5438.213 
136.83 137.15 43.85606 1.50364 6763.645 
137.15 137.25 92.52455 1.49091 7311.663 
137.31 137.47 171.9594 1.58824 5646.534 
137.47 138.63 38.06103 1.51094 6837.867 
138.69 138.93 104.3548 1.6252 5403.683 
230.77 231.69 81.76419 1.66538 5431.884 
231.83 232.62 67.511 1.64663 5349.477 
232.94 233.25 123.6416 1.9275 3125.909 
233.33 233.56 184.3642 1.68 4778.601 
233.63 234.32 111.7504 1.55114 6271.732 
234.32 234.58 121.9585 1.52222 6522.062 
234.59 234.66 107.9088 1.5025 6755.774 
234.66 234.88 99.54652 1.50348 6924.638 
234.88 235.39 86.92673 1.46269 7523.061 
235.77 236.03 169.7411 1.84481 3345.938 
236.04 236.31 141.3543 1.65179 5187.326 
236.4 236.64 179.3256 1.8244 3394.986 
278.06 278.49 98.17205 1.75273 4575.223 
278.49 278.8 42.24656 1.44062 7901.028 
335.71 336.61 38.58967 1.61934 6080.744 
336.93 337.69 82.42987 1.52377 7360.136 
357.41 357.63 181.1483 1.82043 4408.986 
357.63 358.51 74.01562 1.52225 6671.84 
358.6 358.67 127.8175 1.62625 5011.136 
358.67 358.81 134.4987 1.61867 5278.985 
392.99 393.52 84.85981 1.69963 5151.874 
393.52 393.59 49.08375 1.4075 8381.072 
393.59 393.89 63.05258 1.52065 6549.265 
393.89 394.6 31.43986 1.45931 7415.229 
394.61 394.62 39.53 1.425 8412.617 
91.57 91.93 97.16757 1.60703 5542.448 
91.94 92.55 73.36258 1.49468 7575.163 
102.65 103.43 82.24114 1.60937 5680.522 
103.62 104.19 87.66138 1.58259 6045.902 
104.62 104.78 170.2465 1.64118 5081.558 
104.79 105.77 64.39586 1.45535 7802.444 
106.44 106.76 60.90636 1.58576 5807.647 
106.78 107.03 66.53385 1.49577 6797.174 
107.07 107.48 69.43238 1.50167 6919.24 
107.61 108.49 99.32067 1.74056 4220.318 

 
For instance, in the step, the three logs LSDU, 
VL6F, and SPOR were selected by the program 
code for estimating the volatile matter. The 
equations of the first and second coal beds in 
DHH1 were formed as follow: 

6

6

25.6 1327.740 3229.069 30.152
30.4 5438.213 2712.780 44.920

   
   



LSDU VL F SPOR

LSDU VL F SPOR

X X X c
X X X c  (4) 

The same equations were formed for all the 42 coal 
beds of the reference boreholes, and thus the 
system of equations with three unknowns and 42 
equations (c=0) or four unknowns and 42 
equations (c≠0) was formed. Because there were 
16 well-logs, recorded as LAS files, it was possible 

to select three different logs in 560 combinations. 
In other words, 560 systems of equations could be 
combined with three variables and 42 equations. 
Surely, we had to use programming methods for 
solution of these systems. To solve the system, two 
cases were considered. 
For the first case, the constant value in the 
equations was assumed to be zero (c=0). Then 
three of the 42 equations were selected to be 
solved in a three equation-three unknown system. 
The process of selecting, solving, and deviation 
recording was performed, while all the 42 
equations were solved against each other in a three 
equation-three unknown system. The final answer 
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of the equation was the answer with the least 
deviation. Thus the effect factors were calculated. 
The second case was performed in a similar 
manner with c≠0. Therefore, the four equation-four 
unknown systems were charged to be solved by the 
program. 
To implement the above-mentioned method, the 
C# language in Visual Studio was incorporated for 
writing the code. The Gaussian method was 
employed to solve the system of equations. While 
there were 11480 combinations of three equations 

in all the 42 equations, we solved the three 
equation-three unknown systems in 22960 
iterations for each 560 combinations of the logs. In 
other words, 12.857.600 systems were solved to 
find the best estimation of the volatile matter 
according to the well-logging. This huge amount of 
calculations was performed using a window based 
tool, programmed by visual studio. The program 
completed the computations in approximately 180 
s. The output of the program is given in Figure 4. 

 

 
Figure 4. Output of the program, determining the best well-logs for estimating volatile matter of coal beds in 

reference boreholes. 
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The results and the related deviations, obtained by 
running the program, showed that for estimating 
the volatile matter, the minimum deviated 
estimation corresponded to the logs of 
Compensated Density (CODE), 60 cm Velocity 
(VL6F), and Long Spaced Neutron (LSN) when 
applied to the systems. In addition, when the 
constant value was set to zero (c=0), the results 
were more accurate. The effect factors of logs of 
CODE, VL6F, and LSN were calculated as 
follows: 

6

 19.492299,  
 0.024813,  

 0.035316,  
  0.0

 


 



CODE

VL F

LSN

X
X
X
c

 

 

Embedding the effect factors in relation 1 resulted 
in a relation between the well-logs and estimated 
volatile matter. 

19.492299  0.024813 6

 0.035316 0.0

   



V CODE VL F

LSN
 (5) 

where V is the estimated value of the volatile 
matter in percent, and the CODE, VL6F, and LSN 
were log values expressed in API units, which 
were read from Log ASCII Standard files.  
Referring to Figure 4, the amounts of volatile 
matter of the coal beds in the reference boreholes 
were estimated using the relationship. Then the 
estimated values were compared with the values 
of the proximate analysis. For instance, the 
volatile matter of the first coal bed in DDH1 was 
estimated as follows: 

19.492299 2.215  0.024813 3229.069
 0.035316 321.267  0.0  25.601
    

  
 

This is an exact estimated value for the first coal 
bed with a deviation of less than 1% with respect 
to the analysed value. However, the corresponding 
estimations of all the other beds were not so 
accurate. The deviation value was calculated for 
all the coal beds in the reference boreholes, and 
the results obtained were summarized in Figure 4. 
The average deviation was 8.08%. 
The above steps were implemented to derive the 
relationships between the well-logs and ash 
content as well for moisture of the coal beds. 

According to the results obtained, the logs of 
Long Spaced Density Log (LSDU), Bed 
Resolution Density (BRDU), and Short Spaced 
Neutron (SSN) would be the most accurate logs to 
estimate the ash content. Therefore, the 
relationship between the ash content and the 
above three logs were defined as: 

 0.009120 0.003235 

0.009300 0.0

   



A LSDU BRDU

SSN
 (6) 

Similarly, the relationship between moisture and 
well-logs were derived as follows: 

0.085245 0.212860 

0.021822 0.0

   



M CADE SPOR

SSN
 (7) 

In Equations 4 and 5, A is the estimated value for 
the ash content, M is the estimated value of 
moisture in precent, and LSDU, BRDU, SSN, 
CADE, and SPOR are the log values in API units, 
to be read from the Log ASCII Standard files.  
The relationships were implemented in the 
boreholes other than the reference boreholes as 
well. The boreholes with IDs of DDH11 and 
DDH13 were selected. As shown in Figure 3, the 
borehole number 11 was drilled between the 
reference boreholes. However, borehole number 
13 was located away from the reference 
boreholes. Although the proximate parameters of 
the coal beds in boreholes 11 and 13 were 
analysed and reported, to check the accuracy of 
relationships (6), (7), and (8), it was assumed that 
the parameters were not analysed. Then we 
estimated the proximate parameters using the 
relationship, and finally, the results obtained were 
compared against the analysed values. The results 
are summarized in Tables 3 and 4. 
A comparison made between the estimated and 
proximate analysed values of volatile matter in the 
boreholes revealed an average 10.31% deviationin 
DDH11 and 10.52% deviationin DDH13. Also the 
average deviation of ash content estimated values 
obtained from the analysed values was 25.53% for 
DDH11 and 20.75% for DDH13. The figures for 
moisture estimations were 15.70 and 12.80 in 
boreholes numbers 11 and 13, respectively.  
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Table 3. Deviation of the estimated proximate parameters using Equations (5), (6), and (7) from the analysed 
values in borehole number 11. 

DDH11 
Volatile Matter% Ash Content% Moisture% 

Estimated Analysed Deviation Estimated Analysed Deviation Estimated Analysed Deviation 
31.06 23.60 31.59% 33.27 15.40 116.04% 3.40 5.30 35.80% 
25.43 24.40 4.20% 20.11 15.20 32.31% 5.47 5.60 2.31% 
25.78 24.40 5.65% 16.65 17.80 6.48% 5.61 5.30 5.92% 
25.96 23.20 11.89% 27.49 27.40 0.34% 4.75 5.00 4.94% 
22.31 19.30 15.60% 38.51 41.60 7.43% 4.84 4.20 15.23% 
27.45 25.20 8.91% 24.08 20.90 15.20% 4.95 4.80 3.14% 
26.00 27.90 6.81% 15.66 14.80 5.79% 5.61 4.70 19.37% 
25.92 28.40 8.75% 17.40 13.60 27.91% 5.52 4.80 15.07% 
25.69 26.10 1.57% 19.71 15.60 26.36% 5.41 4.50 20.17% 
22.61 24.30 6.95% 30.37 49.30 38.41% 5.53 3.40 62.71% 
23.75 28.00 15.17% 31.50 24.20 30.16% 5.11 5.20 1.78% 
27.37 27.20 0.63% 13.87 14.60 5.03% 5.20 5.20 2.00% 
22.33 19.20 16.32% 35.04 44.00 20.36% 4.70 4.00 17.59% 

Average Deviation: 10.31% Average Deviation: 25.53% Average Deviation: 15.70% 
 

Table 4. Deviation of the estimated proximate parameters using Equations (5), (6), and (7) from the analysed 
values in borehole number 13. 

DDH13 
Volatile Matter (%) Ash Content (%) Moisture (%) 

Estimated Analysed Deviation Estimated Analysed Deviation Estimated Analysed Deviation 
27.58 24.40 13.01% 16.73 12.60 32.74% 5.19 6.20 16.36% 
24.97 22.80 9.50% 26.97 17.40 55.00% 5.25 5.80 9.54% 
26.83 26.20 2.40% 15.82 15.60 1.38% 5.50 5.80 5.13% 
25.80 24.50 5.29% 10.83 14.00 22.66% 5.91 5.60 5.59% 
26.43 26.60 0.65% 13.87 14.20 2.36% 5.57 5.40 3.18% 
26.73 23.90 11.85% 24.52 28.60 14.26% 4.89 4.40 11.02% 
26.98 20.40 32.24% 31.46 33.00 4.67% 4.30 4.40 2.18% 
26.86 23.60 13.79% 24.69 24.90 0.85% 4.77 4.40 8.46% 
28.08 22.90 22.61% 23.88 28.60 16.50% 4.41 4.10 7.59% 
25.59 25.00 2.36% 20.01 21.00 4.72% 5.52 5.20 6.23% 
26.41 28.50 7.33% 19.40 22.40 13.38% 5.37 5.20 3.19% 
27.32 29.90 8.63% 9.51 12.00 20.74% 5.60 5.10 9.75% 
27.21 29.60 8.08% 12.99 13.40 3.04% 5.36 4.60 16.49% 
25.56 23.60 8.29% 17.49 46.70 62.55% 5.40 3.40 58.88% 
25.64 27.00 5.04% 24.22 13.40 80.75% 5.26 4.80 9.59% 
25.95 28.80 9.89% 32.34 21.30 51.83% 4.68 4.70 0.41% 
27.06 27.00 0.22% 13.31 13.40 0.64% 5.38 5.20 3.53% 
26.48 21.90 20.93% 26.11 34.00 23.20% 4.54 4.10 10.76% 
25.00 21.10 18.46% 39.44 36.90 6.87% 3.84 3.40 12.91% 
22.11 22.50 1.75% 42.45 45.00 5.67% 4.37 2.60 67.89% 
28.68 32.80 12.56% 8.74 9.80 10.82% 5.09 5.30 3.89% 
23.54 20.20 16.53% 35.17 45.00 21.85% 4.25 3.90 8.96% 

Average Deviation: 10.52% Average Deviation: 20.75% Average Deviation: 12.80% 
 
On the other hand, it was possible to estimate each 
parameter through the regression equation between 
the parameter and the log with the highest 
regression coefficient. For instance, the best 
regressed well-log against the volatile matter 
values of coal beds in the reference boreholes was 
Sonic Porosity log (SPOR). The regression 
equation was as follows: 

  0.287  40.890  V SPOR  (8) 

The equations for the parameters ash and moisture 
are as follow: 

  0.091   19.619 A GRDE  (9) 

  0.133   1.813 M SPOR  (10) 

where V, A, and M are the estimated values for the 
volatile matter, ash content, and moisture, 
respectively. Log values are expressed in API 
standard units. Volatile matter, ash content, and 
moisture of the first coal bed in DDH11 could be 
estimated using Equations (8), (9), and (10). 

  0.287  43.477  40.890  28.412
  0.091  138.034  19.619  32.180
  0.133  43.477  1.813  3.969

    
   
   

V
A
M
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Theses estimations were implemented for all coal 
beds in the boreholes numbers 11 and 13. 
Comparing the estimated and the proximate 
analysed values of parameters showed an average 
deviation of 12.34% and 14.33% for the volatile 
matter, 53.20% and 55.48% for the ash content, 
and 17.51% and 16.58% for the moisture, 
respectively, in the boreholes numbers 11 and 13. 
The results obtained are summarized in Tables 5 
and 6. Comparing the contents of Tables 3, 4, 5, 
and 6 reflects an improvement in estimation when 
relationships (5), (6), and (7) are applied. When a 
direct estimation method was incorporated to 

estimate the proximate parameters of coal beds in 
borehole number 11, the average deviation from 
analysed values was 12.34% for volatile matter, 
52.23% for ash content, and 17.51% for moisture 
estimated values, while, in case of using 
relationships (5), (6), and (7), the respected 
percentages were 10.31%, 25.53%, and 15.70%, 
respectively. A similar conclusion would be valid 
for borehole number 13. It means that a more 
accurate estimation, especially for ash content, has 
been achieved through the use of our innovative 
estimation method. 

 
Table 5. Deviation of the estimated proximate parameters using Equations (8), (9), and (10) from the analysed 

values in boreholes number 11. 
DDH11 

Volatile Matter (%) Ash Content (%) Moisture (%) 
Estimated Analysed Deviation Estimated Analysed Deviation Estimated Analysed Deviation 

28.42 23.60 20.41% 32.15 15.40 108.75% 3.95 5.30 25.47% 
24.97 24.40 2.34% 30.31 15.20 99.39% 5.54 5.60 1.04% 
24.76 24.40 1.47% 26.10 17.80 46.63% 5.64 5.30 6.41% 
25.99 23.20 12.03% 26.38 27.40 3.74% 5.07 5.00 1.40% 
25.88 19.30 34.11% 34.37 41.60 17.38% 5.12 4.20 21.92% 
25.71 25.20 2.00% 28.05 20.90 34.21% 5.20 4.80 8.40% 
24.48 27.90 12.25% 25.36 14.80 71.38% 5.77 4.70 22.72% 
24.68 28.40 13.10% 25.18 13.60 85.17% 5.68 4.80 18.25% 
24.78 26.10 5.07% 25.76 15.60 65.10% 5.63 4.50 25.16% 
25.09 24.30 3.23% 35.77 49.30 27.44% 5.49 3.40 61.44% 
25.22 28.00 9.93% 34.77 24.20 43.68% 5.43 5.20 4.36% 
24.98 27.20 8.15% 23.94 14.60 63.99% 5.54 5.20 6.46% 
26.18 19.20 36.38% 33.13 44.00 24.70% 4.98 4.00 24.54% 

Average Deviation 12.34% Average Deviation 53.20% Average Deviation: 17.51% 
 

Table 6. Deviation of the estimated proximate parameters using Equations (8), (9), and (10) from the analysed 
values in boreholes number 13. 

DDH13 
Volatile Matter (%) Ash Content (%) Moisture (%) 

Estimated Analysed Deviation Estimated Analysed Deviation Estimated Analysed Deviation 
25.68 24.40 5.25% 25.99 12.60 106.24% 5.21 6.20 15.91% 
25.66 22.80 12.53% 33.73 17.40 93.84% 5.23 5.80 9.91% 
24.91 26.20 4.93% 30.52 15.60 95.62% 5.57 5.80 3.96% 
24.26 24.50 0.97% 24.80 14.00 77.14% 5.87 5.60 4.80% 
24.32 26.60 8.56% 24.18 14.20 70.28% 5.84 5.40 8.18% 
25.88 23.90 8.28% 30.55 28.60 6.82% 5.12 4.40 16.41% 
27.39 20.40 34.24% 27.29 33.00 17.29% 4.43 4.40 0.60% 
26.34 23.60 11.59% 28.56 24.90 14.70% 4.91 4.40 11.63% 
26.55 22.90 15.95% 26.62 28.60 6.91% 4.81 4.10 17.35% 
25.09 25.00 0.36% 27.72 21.00 32.01% 5.49 5.20 5.52% 
24.95 28.50 12.44% 28.68 22.40 28.05% 5.55 5.20 6.73% 
24.55 29.90 17.89% 24.67 12.00 105.61% 5.74 5.10 12.48% 
24.77 29.60 16.32% 24.62 13.40 83.76% 5.64 4.60 22.49% 
24.72 23.60 4.75% 23.95 46.70 48.72% 5.66 3.40 66.38% 
24.95 27.00 7.59% 27.37 13.40 104.22% 5.55 4.80 15.65% 
25.63 28.80 11.00% 29.47 21.30 38.37% 5.24 4.70 11.42% 
24.88 27.00 7.87% 23.73 13.40 77.08% 5.59 5.20 7.42% 
26.46 21.90 20.81% 30.78 34.00 9.47% 4.86 4.10 18.42% 
28.16 21.10 33.46% 31.43 36.90 14.82% 4.07 3.40 19.67% 
26.95 22.50 19.76% 34.66 45.00 22.98% 4.63 2.60 78.05% 
25.17 32.80 23.25% 23.17 9.80 136.46% 5.45 5.30 2.80% 
27.76 20.20 37.42% 31.48 45.00 30.05% 4.25 3.90 9.07% 

Average Deviation: 14.33% Average Deviation: 55.48% Average Deviation: 16.58% 
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The contents of Tables 3 to 6 are summarized in 
Figures 5, 6, and 7. A higher level of deviations in 
volatile matter estimation could be concluded from 
Figure 5. In this figure, the horizontal axis presents 
the analysed values for volatile matter of boreholes 
11 and 13, and the vertical axis values are the 
deviations. The triangle markers represent 
deviation values of estimation of volatile matter 
using equations (8), (9), and (10), while the star 
markers are the representatives of the deviation for 

estimations using Equations (5), (6), and (7). The 
solid line and dotted line are an indicator of the 
average level of deviation. As it could be 
concluded from the figure, less deviations for 
estimation using Equations (5), (6), and (7) were 
achieved. The same conclusion can be drawn for 
Figures 6 and 7. Figure 6 shows deviation levels of 
the methods for ash content estimation and Figure 
7 presents the deviations for moisture. 

 

 
Figure 5. Deviation of the estimated volatile matter from the analysed values using Equations (5), (6), and (7) 

(star markers and solid line) vs. the deviations estimation using Equations (8), (9), and (10) (triangle marker and 
dotted line) in boreholes numbers 11 and 13. 

 

 
Figure 6. Deviation of the estimated ash content from the analysed values using Equations (5), (6), and (7) (star 

markers and solid line) vs. the deviation estimation using Equations (8), (9), and (10) (triangle marker and dotted 
line) in boreholes numbers 11 and 13. 
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Figure 7. Deviation of the estimated moisture from the analysed values using Equations (5), (6), and (7) (star 
markers and solid line) vs. the deviations estimation using Equations (8), (9), and (10) (triangle marker and 

dotted line) in boreholes numbers 11 and 13. 
 
5. Conclusions 
What can be concluded from this work can be 
summarized as follows: 

1. Estimating the proximate parameters was 
performed using a new method based on the 
sequential solution for the systems of equations. 
We performed a case study in this work to support 
our method. 

2. For each one of the parameters, by 
applying the method through solving 12.857.600 
systems of equations, the most accurate 
relationship was obtained to express the impact of 
each log on the estimated parameter. 

3. Therefore, the empirical relationships were 
developed in the form of:  

  19.492299   0.024813 6   0.035316 ,
  0.009120   0.003235   0.009300 ,
  0.085245   0.212860   0.021822 ,

   
   
   

V CODE VL F LSN
A LSDU BRDU SSN
M CADE SPOR SSN

 

for estimating the volatile matter, ash content, and 
moisture, respectively. 

4. In the performed case study, the estimated 
value of volatile matter deviated from the 
proximate analysis values up to 10.52% on 
average. This value was 25.55% for the ash content 
and 15.70% for the moisture. The results were 
more accurate than those obtained using the 
regression equations for the estimation. 

5. From the case study, the improvement in 
estimating the deviations, especially for the ash 
estimation, was concluded. 
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و  ییمایپ چاههاي  سنگ با استفاده از داده هاي زغال هیلا یفیهاي ک یژگیبرآورد و يبرا یسینو برنامهش رویک 
 یهاي معادلات خط دستگاه یحل متوال

  

*یرمض درضایحمی و وسفی ریام  

  رانیا ر،یرکبیام یصنعت دانشگاه ،و متالورژي معدن یمهندس دانشکده

  29/3/2019 رشی، پذ18/11/2018ل ارسا

  ramazi@aut.ac.ir* نویسنده مسئول مکاتبات: 

  

  چکیده:

 ـا ياجرا يدهد. برایارائه م چاه پیمایی ينگ از نمودارهاس هاي زغال هیلا یفیکهاي  یژگیبرآورد و ينوآورانه برا حل راه کی پژوهش نیا ، زبـان برنامـه  حـل  راه نی
قرار گرفت. ابتدا دو گمانه  دهدقت آن مورد استفا یروش و بررس انیب يبرا یچهار گمانه اکتشافهاي  داده يمطالعه مورد کی یکار گرفته شد و طه ب #C یسینو

 کی ـ جـاد یا يسه نمـودار بـرا   ریها در دسترس است، انتخاب و مقادآن یفیکهاي  یژگیو زیآنال جیو نتا چاه پیماییهاي  که دادهی یها گمانه یعنیبه عنوان مرجع؛ 
در  هابیضر نیشد. ا انیب تأثیر بیبا عنوان ضر یفیک یژگیهر و يدبرآور ریمقاد يکار گرفته شد. با حل دستگاه معادلات، اثر هر نمودار بر روه دستگاه معادلات ب

 22960رد، در مجمـوع  برآو نیترقیبا دق تأثیر هايبیمحاسبه ضر يدند. براکر جادیا یژگیوهر برآورد  يبرا یرابطه تجرب کی چاه پیماییر سه نمودار یداکنار مق
 چاه پیمایینمودار  16 مجموعاًاز  تایی سه بیترک 560که امکان انتخاب  ییاست. از آنجا شدهو حل  فیتعر چاه پیماییهر سه نمودار  يعادلات براممورد دستگاه 
استفاده شد. با حل  یینها هجیبه نت یابیدست يبرا یسینوبرنامههاي  و حل شد که روش جادیا یمجهول سه -معادله سهدستگاه  ونیلیم 12از  شیوجود داشت، ب

بـا   يکـه بـرآورد   یجیبرآورد شده، نتا ریمواد فرار، خاکستر و رطوبت با مقاد یشگاهیمقدار آزما سهیو سپس مقا جیاز نتا ستفادهبا ا یژگیهر دستگاه و برآورد هر و
بـود.   ههمـرا  ٪5/10برآورد مواد فرار با انحراف  يروش برا نیا يسازادهیشد. پ رفتهیپذ تأثیرهاي  بیعنوان ضر را داشتند به یشگاهیانحراف از مقدار آزما نیکمتر

 درصد بود. 14و  22 بیرد مقدار خاکستر و رطوبت به ترتومربوط به برآهاي  انحراف

  دستگاه معادلات. ،تأثیر بیضر ،یفیکهاي  یژگیو ،چاه پیمایینگ، س زغال کلمات کلیدي:

 

 

 

 


