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Abstract 
In mining projects, all uncertainties associated with a project must be considered to 
determine the feasibility study. Grade uncertainty is one of the major components of 
technical uncertainty that affects the variability of the project. Geostatistical simulation, 
as a reliable approach, is the most widely used method to quantify risk analysis to 
overcome the drawbacks of the estimation methods used for an entire ore body. In this 
work, all the algorithms developed by numerous researchers for optimization of the 
underground stope layout are reviewed. After that, a computer program called stope 
layout optimizer 3D is developed based on a previously proposed heuristic algorithm in 
order to incorporate the influence of grade variability in the final stope layout. Utilizing 
the sequential gaussian conditional simulation, 50 simulations and a kriging model are 
constructed for an underground copper vein deposit situated in the southwest of Iran, 
and the final stope layout is carried out separately. It can be observed that geostatistical 
simulation can effectively cope with the weakness of the kriging model. The final results 
obtained show that the frequency of economic value for all realizations varies between 
6.7 M$ and 30.7 M$. This range of variation helps designers to make a better and lower 
risk decision under different conditions. 

1. Introduction 
The usage of the term “risk” as a synonym for 
uncertainty is not right because its definitions are 
not the same. Ross [1] has stated that the risk (or 
chance) can be described as the probability that a 
discrete event will or will not occur. The risk is 
denoted by a single probability estimation. In 
contrast, uncertainty denotes the inability to 
estimate a value exactly. Uncertainty can be 
denoted by a continuous distribution that defines a 
range of estimates and the likelihood of 
occurrence of an event. Therefore, the risk and 
uncertainty should be understood and managed 
during all stages of an investment such as a 
mining project.  
In today’s mining operations, particularly in 
underground mining, the kriging method is the 
most dominant approach used to estimate ore 
resources. Hence, this technique is used to 

produce a block model and the subsequent 
operations such as determination of underground 
stopes and production scheduling. On the other 
hand, this method leads the mining operations to 
several shortcomings, i.e. (i) a single NPV can be 
obtained, (ii) the uncertainty in numerous 
responses such as NPV, dilution, production rate, 
etc. is not accessible through this method, and (iii) 
the quantification of the influence of the 
smoothing effect of the kriging method is too 
problematic. In a mining project, the sources of 
uncertainty such as ore reserve, metal grade 
distribution, and metal price must be thoroughly 
examined to make a better decision; otherwise, 
the project may face serious financial calamities. 
A number of gold mines could not produce pre-
defined gold from 1983 to 1987 because of 
inaccurately estimated grades [2]. A majority of 
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mining companies failed due to overestimation of 
ore grade in the South African mines [3].  
In order to resolve the mentioned problems, 
conditional simulation with considering 
uncertainty during ore-body grade estimation can 
be useful and increase the accuracy of the project 
design [4, 5]. A number of researchers have tried 
to determine the influence of grade uncertainty in 
the open-pit mine limit and production planning. 
Smith and Dimitrakopoulos [6], and Kumral and 
Dowd [7] have studied the impact of geological 
uncertainty on open-pit short-term production 
scheduling using conditional simulation. Ramazan 
and Dimitrakopoulos [8] have used the integrated 
conditional simulation and Stochastic Integer 
Programming (SIP) to maximize Net Present 
Value (NPV) for a long-term production 
scheduling. Koushavand et al. [9] have presented 
a Mixed Integer Linear Programming (MILP) 
formulation, considering grade uncertainty to 
obtain maximum NPV during long-term mine 
planning in northern Alberta. Many researchers 
have studied the influence of grade uncertainty in 
open-pit mines [10-13]. Nevertheless, a few 
works have been carried out related to the impact 
of grade uncertainty on underground mining limit 
and production scheduling. Gerico and 
Dimitrakopoulos [14, 15] have developed a 
probabilistic mixed integer programming (MIP) 
formulation to determine the size and location of 
stopes and pillars in sub-level stope mines under 
pre-defined risks and grade uncertainties. Both the 
open-pit and underground mine plannings using 
only one of the estimation methods for the entire 
ore-body may cause a serious deviation from the 
target. In this paper, in the first step, a 
comprehensive review of the underground stope 
layout methods and algorithms are presented. 
Then a new heuristic algorithm and a computer 
program are introduced. After that, an 
underground copper deposit is selected in order to 
determine the stope boundaries under grade 
uncertainty using geostatistical analysis and 
conditional simulation. 

2. Underground stope Layout determination 
In 1977, the first algorithm was developed by 
Riddle [16] for optimization of underground 
mining limit to design the block-cave mine layout. 
Putting some blocks with negative values as 
pillars to provide separate stopes is the main 
difference between this algorithm and Dynamic 
Programming (DP). The algorithm was written in 
FORTRAN and implemented on hypothetical 
economic block models in a a 2D space. Deraisme 

et al. [17] have implemented the downstream 
geostatistical approach in a uranium underground 
mine. They used large panels considering non-
linear geostatistics to analyze the grades of mining 
units. This method is able to consider slope angle, 
which is ignored in most of the proposed methods. 
Octree division algorithm was developed by 
Cheimanoff et al. [18]. The algorithm identifies 
mineable volumes using the data obtained by 
drillholes, geostatistical data, and mineral forms 
in a 3D space. This algorithm is contained in the 
GEOCAD [19] package but its implementation on 
a well-known block model has not been reported. 
The main drawback of this algorithm is that the 
minimum dimensions of blocks, which have a 
lower amount of minerals, are included in the 
final limit. This issue affects the overall profit of 
an operation due to the existence of several waste 
blocks [20]. The floating stope method has been 
developed by Alford [21]. During the process of 
this algorithm, a stope with pre-defined 
dimensions is floated within the block model in a 
3D space, and finally, the underground mining 
limit can be generated based on an objective 
function, which can be defined as the highest 
tonnage, economic value or ore grade. This 
algorithm is available on the CAE Studio 
DATAMINE [22] software, and the optimality is 
not guaranteed due to the existing overlapping 
stopes in the area. Ovnic and Young [23] have 
developed the Branch and Bound technique using 
the Mixed Integer Programming (MIP) technique 
in combination with the piecewise linear function 
as a method for stope design. In this algorithm, 
the boundaries of extraction stopes are determined 
by exploring the starting and ending points in a 
defined row. There are a lot of softwares available 
to solve the mathematical problems, especially the 
branch and bound techniques including the 
LINGO [24], GAMS [25], and CPLEX packages 
[26]. Mirzaeian and Ataee-pour [27] have used 
the GAMS software tool to optimize the 
underground stope geometry on numerical 
examples. In addition, the MPS [28] software 
usage for stope layout optimization in the Pea 
Ridge iron ore mine has been reported in 1995 
[23]. Ataee-pour [29] has proposed the maximum 
value neighborhood (MVN) algorithm. The 
fundamentals and basic concepts of this algorithm 
are the same as the floating stope method. This 
method uses the concept of the neighborhood with 
the highest value of production. However, this 
algorithm that eliminates the drawbacks of the 
floating stope method and has been considered as 
one of the most popular methods in underground 
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mining industry has two main drawbacks: (i) 
Moving the starting location of evaluation alters 
the set of stope layouts generated from the same 
orebody, (ii) Blocks that are examined earlier in 
the process are given a preferential treatment. 
Ataee-pour [30] has developed a computer 
program named SLO1  for stope limit optimization 
in a 3D space. In order to improve and facilitate 
the procedure of the floating stope method, 
Cawrse [31] has suggested the Multiple Passes 
Floating Stope Process (MPFSP). In this method, 
the input data including the maximum grades, cut-
off grade, and maximum tonnage of wastes are 
defined by the user. Then after producing several 
stopes, the final statistical results are saved in an 
excel format (CSV). However, selection of the 
final stopes has been facilitated by this method, 
although it does not guarantee the optimum limit. 
Jalali and Ataee-pour [32], and Jalali et al. [33, 
34] have proposed a 2D and mathematical logic 
algorithm called OLIPS2. In this algorithm, the 
dynamic programming (DP) method is used to 
find the underground optimum limit. One of the 
most important characteristics of this algorithm is 
that it is run on a special block economic value 
called integrated probable ptope model. Based on 
this algorithm, a computer program called SBO3 
has been developed and validated by hypothetical 
models. In addition to the OLIPS algorithm, the 
GOUMA4 algorithm has been presented by Jalali 
et al. [35]. This algorithm can be implemented for 
a variable value economic model (VVEM), and is 
able to solve large-scale problems in a 2D space. 
They introduced a computer program named 
GOUMA-CP, designed in the C++ language, and 
applied to optimize the underground mining area 
of a gold mine in Australia. Grieco and 
Dimitrakopoulos [36] have developed a 
probabilistic MIP model to determine the stope 
and pillar design based on the geological 
uncertainty and pre-defined risks. In this method, 
at first, the block model is divided into several 
layers. Next, each layer is separated into several 
panels and rings. Every ring is defined as a binary 
variable in mixed integer programming, whose 
objective function is to maximize  the metal 
content in an entire pre-defined time period. In 
addition, the solution time of this method depends 
on the number of variables in the complex mixed 
integer programming model, which can limit its 

                                                   
1 Stope Limit Optimizer 
2 Optimum Limit Integrated Probable Stope 
3 Stope Boundary Optimizer 
4 Global Optimization for Underground Mining Area 

application in a real industry operation [37]. Jalali 
and Hosseini [38] have introduced a greedy 
algorithm to determine the optimal stope layout. 
The algorithm’s logic follows a searching method 
on a graph model corresponding to an economic 
block model, and is solved using Dijkstra [39], as 
a powerful solver. Topal and Sens [40] have 
proposed a methodology to find the best and 
profitable stope layout for an entire block model 
using the MATLAB software considering the 
economic values of the blocks. The main 
disadvantage of their algorithm was the 
elimination of several stopes with lower values, 
while removing the overlapping stopes. Bai et al. 
[41] have proposed an algorithm based on the 
graph theory to optimize the underground mining 
limits. This method is only applicable to the sub-
level stoping mines. In this method, a raise is 
defined and each block can be expressed in the 
cylindrical system (r, θ, z). The final result can be 
obtained by establishing the best position of the 
raise and vertical extent. The main defect of their 
algorithm is that it is limited to the underground 
mines, which are extracted by the sub-level 
stoping method. Sandanayake et al. [42, 43] have 
proposed an algorithm based on heuristics 
considering various possible stopes to optimize 
the underground stope layout. The results of their 
implementation on a real copper deposit showed 
10.7% more valuable solution than the MVN 
algorithm. Nikbin et al. [44] have proposed a new 
hybrid algorithm, which is a combination of the 
dynamic programming and the greedy algorithm. 
They implemented their algorithm on an actual 
case study. The results obtained by the new 
algorithm was compared with the previous 
algorithms including the floating stope, MVN, 
and greedy algorithm. Even though their proposed 
algorithm is not able to provide a truly optimum 
solution, it has been able to find a higher profit 
compared to the mentioned algorithms. 

3. Proposed heuristic algorithm 
In order to determine the underground stope 
layout, a heuristic algorithm developed by 
Sandanayake et al. [42] was utilized. In order to 
facilitate the implementation of this algorithm 
with some strategies, which will be explained in 
the following, a user-friendly interface (UI) 
computer program (Figure 1) was developed in 
the C# programming language [45] named Stope 
Layout Optimizer 3D (SLO3D) [46]. This 
computer program has three main steps:  
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1. Creating the Block Economic Value 
(BEV) 

2. Generating the possible stopes 
3. Determination of the final underground 

stope layout 

In the following, a comprehensive explanation of 
SLO3D is presented.  

Table 1. Summary of the proposed algorithms in the underground stope layout optimization. 
Year Author Algorithm Mining Method Mathematical 

Formulation Dimension 

(1997) Riddle [16] Dynamic Programming (DP) Block caving Yes 2D 

(1984) Deraisme et al. [17] Geostatistical Approach Sub-level Stoping 
Cut & Fill No 2D 

(1989) Cheimanoff et al. [18] Octree Division All No 3D 
(1995) Alford [21] Floating Stope All No 3D 
(1999) Ovanic & Young [23] Branch and Bound All Yes 1D 

(2000) Ataee-pour [20] Maximum Value Neighborhood All No 3D 

(2001) Cawrse [31] Multiple Pass Floating Stope 
Process All No 3D 

(2007) jalali et al. [33] OLIPS All yes 2D 

(2007) Grieco and Dimitrakopoulos [36] Mixed Integer Programming Sub-level Stoping Yes 2D 

(2008) Manchuk and Deutsch [47] Simulated Annealing Sub-level Stoping 
Cut & Fill No 3D 

(2009) Jalali and Hosseini [38] Greedy All Yes 2D 
(2010) Topal and Sens [40] Heuristic All No 3D 
(2013) Bia et al. [41] Network Flow Method Sub-level Stoping Yes 3D 
(2015) Sandanayake et al. [42] Heuristic All No 3D 
(2016) Jalali et al. [35] GOUMA All Yes 2D 
(2018) Nikbin et al. [44] DP and Greedy All Yes 3D 
(1997) Riddle [16] Dynamic Programming (DP) Block caving Yes 2D 

 
Figure 1. Stope Layout Optimizer (SLO3D). 

3.1. Creating block economic value 
A grade block model with regularised dimension 
as the input file must be created in the Microsoft 
Excel format before running the program. The 
input file structure consists of seven major 
columns similar to a spreadsheet shown in Figure 
2 including the coordinate of a regularised block 
(XC, YC, and ZC), block dimension (XINC, 

YINC, and ZINC), grade of a block (percent or 
gram per ton), value of a block (BEV ($)), density 
(ton/m3), total weight, and metal weight of every 
block. After importing the input file by clicking 
on the specified button named ‘Import Data’, the 
user should import the economic factors such as 
the mining cost (Cm), processing cost (Cp), 
refining cost (R), metal price (P), grade (g), 
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weight of a block (T), and recovery (Y). Then 
with the defined cut-off grade, the blocks below 
the cut-off grade are termed as the waste blocks. 
In the “Grade” combo box, there are two options 
for definition of ore grade, in which the first one 
is related to metals where the grade is defined in 
percent (%) and the second one is for metals that 
are defined as grams/tonne. After clicking on the 

“Calculate BEV” button, the grade block model is 
converted into an economic model based on 
Equation 1 and the number of ore and waste 
blocks with consideration given to the cut-off 
grade all reported. 
 

    m pP R G Y C C T       
 

(1) 
 

 
Figure 2. Input file structure before running program (Excel format). 

3.2. Generating possible stopes 
In the second step, the algorithm produces all 
possible stopes for an entire ore body. By clicking 
on the “Generate” button, the algorithm specifies 
the origin of the economic block model. Then 
assuming that the block increases in the size 
increment in the X, Y, and Z directions as the 
stope dimension parameters, the last stope block 
is determined. The constructed stope is floated 
through the economic model, and all possible 
stopes are generated based on the conditions 
shown in Equations 2 and 3 [42]. 

(iᇱ , jᇱ, kᇱ) ≤ (i , j , k) ≤ (iᇱᇱ, jᇱᇱ,  kᇱᇱ) 
 

(2) 
 

(iᇱ ≤ i୫ୟ୶   , jᇱ ≤ j୫ୟ୶  , kᇱ ≤ k୫ୟ୶) 
 

(3) 

 

where (i′ j′ k′) and (i′′ j′′ k′′) are the orogin and last 
block of a stope, respectively. (imax jmax kmax), 
as shown in Equation 3, is the maximum stope 
block (i j k) within the economic model. Finally, 
the average grade and the economic value of each 
stope are calculated. The output file structure 
consists of seven major columns including (Figure 
3): Stope ID, Stope Dimension in the X, Y, and Z 
directions (XINC, YINC, and ZINC), Stope Grade 
(percent), Stope Economic Value (SEV), Total 
Weight, Metal Weight and identifier of origin, and 
the last block of each possible stope. Finally, 
based on the SEV column, the number of positive 
and negative stopes are reported in SLO3D. 

 
Figure 3. Output file structure after generating all possible stopes. 

3.3. Determination of final underground stope 
layout 
In the first step, all possible stopes with positive 
economic values, generated in the previous step, 
are selected and imported as an input file for this 
step. In order to determine the optimum location 
of the underground stopes, all possible sets of the 
non-overlapping stopes are generated. Two major 
null families of sets ST and SE are created. ST is 
all possible sets of non-overlapping stopes that are 
generated during the algorithm and SE is a unique 
derived set of ST. During the algorithm process, 
each stope is compared with all stopes within any 

set of non-overlapping stopes (SP). If the 
imported stope does not overlap with other stopes, 
all stopes are combined and a new set of non-
overlapping stopes is created (SPnew). While the 
algorithm is iterated once, all sets are inserted in a 
new set called SO. This process is iterated until all 
positive stopes participate in the algorithm. 
Finally, the highest value of the non-overlapping 
stopes is selected as the optimum solution. The 
steps of this algorithm can be found in Figure 4.   

In large-scale problems, the sets of non-
overlapping stopes (SP) increase dramatically. 
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Thus the solution time increases as well. Three 
strategies are added to the presented algorithm in 
order to overcome this problem. The first strategy 
is the sorting of all sets (ST members) according to 
their economic value to the lowest value, and 
selects a percentage of the sorted collection. The 
major drawback of the first strategy is removing 
some stope sets with a low economic value, while 
this strategy discards the possibility of a 
combination of removed sets and other stopes that 
may be a new set with a higher total value. Due to 
this disadvantage, two strategies with probabilistic 
backgrounds are proposed and added to this 
algorithm. These two strategies are: 

• Selecting a percentage of ST members randomly 
and frequently.  

• Selecting a percentage of ST members based on 
the number of stopes in each set. 

In SLO3D, these strategies are covered in the 
“selection type” combo box. If the user does not 
choose any condition, the algorithm will analyze 
all possible sets of stopes, which can increase the 
solution time in very large problems. On the other 
hand, for instance, by choosing the first strategy 
in this section, the number of sets (ST members) 
can be varied based on the economic value of 
each set. To select the number of stopes, the user 
can define the percentage using the “% of stopes”. 
Finally, the total economic value of the 
underground mining layout and identification of 
stopes, and the entire underground layout are 
reported.  

4. Simulation background 
Numerous conventional methods are available for 
estimation of the regional variable such as ore 
grade by the least square based methods. Ordinary 
kriging (OK) and simple kriging (SK) are 
developed in this manner. The major drawback 
and inaccuracy of these methods is bias 
conditionality due to some underestimation and 
overestimation [48]. Unlike these approaches, the 
geostatistical simulation methods produce models 
on a detailed scale to simulate the spatial and 
statistical characteristics of an ore deposit [49]. 
Furthermore, the geostatistical simulation 
methods do not suffer from the smoothing effect 
and aim to model the in situ spatial variabilities. 
Therefore, these methods can be used for 
uncertainty analysis and risk quantification [50].  

Among the simulation methods, Sequential 
Gaussian Simulation (SGS) is the most widely 

used and efficient method for simulating a 
multivariable field in the mining industry [51-54]. 
The simplicity and flexibility of this algorithm are 
the most important reasons that make it popular 
[55, 56]. In the SGS approach, grade simulation is 
conducted over the Gaussian transformation of the 
measurements. Therefore, any simulated grade 
value is conditional on the regional data and every 
location is randomly selected from the normal 
conditional cumulative distribution defined by 
kriging mean and variance. All simulated grades 
are dependent upon the previously simulated 
grade values. Finally, all simulated values are 
back-transformed to the original data. The basic 
steps in the SGS algorithm are listed below [57]: 

1. Calculate statistical and histograms of 
parameters. 

2. Transform the data to a Gaussian distribution. 
3. Compute and model variogram of transformed 

data. 
4. Define the coordinates of blocks. 
5. Choose a random path. 
6. Estimating a value using the kriging method 

(known and simulated). 
7. Draw a value at random from the Gaussian 

distribution, which is known as the simulated 
value. 

8. Proceed to the next node and simulate 
sequentially.  

9. Repeat steps till all nodes have been simulated. 
10. Back-transform all simulated values. 

5. Case study 
In order to incorporate the grade risk 
quantification in the determination of 
underground stope layout, a real copper deposit, 
located in the north-west of the Zahedan Province 
(Iran) was selected. The data on this area was 
obtained from 35 drill hole samples. The core logs 
contain the assay, geological description, azimuth, 
and dips of boreholes. The assay data of these 
boreholes shows the main metal with an average 
of 0.57% Cu and 5.75% Cu as the high grade. In 
this work, a part of this area (a vein in the N23˚W 
direction) that has enough exploration data was 
considered as the main studied area. This area is a 
vein with a thickness of 20 m with a spanning 400 
m in the longitude direction and reaching 100 m 
in the vertical direction. The datamine software 
was used to generate the ore body model.  
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Create SP′  = {} ; 
SP′  = {S};

Merge SP and SP′ if S & S′ 
doesn’t overlap 

SP′new = SP ᴜ SP′

Create SP′′  = {} ; 
SP′′  = {S}

Are all SP members 
parti cipated?

Are all stopes members 
parti cipated?

End

Choosing a strategy based on 
large and complexity of 
problem
 Participating of all ST 

members.  
 selecting a percentage of 

ST members based on  
their economic values.

 selecting a percentage of 
ST members randomly.

 selecting  a  percentage  of  
ST members  according to 
 descending the number 
of stopes in every set.  

Yes

Yes

NO

NO

 all possible stopes 
with positive value

Create ST 
ST = {}

For each positive stope 
(Stope ID)

For each SP € ST  

Create SE 
SE = {}

Add SP,SP′&SP′′ to SE 
SE = {SP,SP′&SP′′}

Update the economic value 
for each SP,SP′&SP′′ 

Add SE To SO 
SO = SE 

Selecting the high value stope set as  
optimum solution

Add SO To ST 
ST = SO 

Start

 
Figure 4. Revised stope layout optimization algorithm after Sandanayake et al. [42]. 
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6. Geostatistical modeling 
6.1. Variogram modeling 
Variogram modeling and determination of 
anisotropic ellipsoid are the primary factors 
involved in the geostatistical analysis. In the first 
step, statistical analysis was carried out for grade 

data. This analysis shows that the grade 
distribution in the studied area has a significant 
positive skewness as the histogram is skewed to 
the right (Figure 5a). Table 2 shows the statistical 
parameters of the exploration data after applying a 
compositing length of 5 m. 

 
 

Table 2. Summary statistics of the composite data. 

Number of 
samples 

Average 
grade (Cu %) 

Min. 
(%) 

Max. 
(%) Median Variance Std. 

Dev. Kurtosis Skewness 

762 0.562 0.0005 5.75 0.161 0.911 0.954 11.842 3.153 
 

Most statistical methods require assuming 
normality of data. Thus only the dataset with a 
normal distribution can be used to perform 
variogram modeling and simulation; otherwise, 
the geostatistical calculation will have systematic 
errors. In this work, using the S-GeMS [58] 
software, the row dataset is transformed to a 
normal distribution with the variance of one and 
the mean value of zero (Figure 5b). Table 3 shows 
the statistical parameters of the exploration data 
after normalization. Variography was carried out 
to provide the copper variability of the area. In 
order to identify the anisotropy axes, the 

directional variograms were drawn. Due to the 
different range of variograms and equal sill, the 
anisotropy is geometric. Variograms for the 
directions of 30˚, 90˚, and 120˚ were performed 
and studied carefully. Figure 6 shows the 
directional variograms of the copper grade in 
different directions. The red points and the solid 
line represent the experimental and the theoretical 
variograms, respectively. According to the 
variography results, anisotropy is in the directions 
of N30˚E and N60˚W. Table 4 shows the 
parameters of variogram modeling. 

Table 3. Summary statistics of the normalized data. 
Number of 

samples Min. (%) Max. (%) Mean Std. Dev. 

762 -3.213 3.213 0.00 1.00 

Table 4. Parameters of spherical model. 
Variogram Model Nugget 

effect Sill Range (m) Azimuth Dip Tolerance 
30 70 15 

Spherical 
0.2 0.8 69 

120 70 15 0.4 0.5 54 
Vertical 90 90 0.2 0.79 60 

Figure 5. Histogram of composite copper data; (a) original data, (b) normalized data. 
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6.2. Copper value simulation 
In the second step, a 3D block model of the 
studied area was constructed. Since the sequential 
gaussian simulation is most widely used for 
obtaining grade distribution and considering that 
50 realizations are enough to reach a reliable 

result [36], this kind of simulation was used to 
produce 50 probable copper values for each unit 
of the entire grid block model. Figure 7 shows the 
horizontal plan of four randomly selected 
realizations.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Realization #4 

Realization #29 Realization #46 

Realization #18 

Figure 7. Horizontal plan of four randomly selected realizations. 

Figure 6. Directional variograms of copper grade. 
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6.3. Validation of simulation results 
Validation of the simulated realizations must be 
undertaken by reproduction of histograms and 
variogram models, and it should be very similar to 
the original data features [59]. Figure 8 shows the 
matching of histogram reproduction of a 
randomly chosen from 50 realizations. Also to 

check the simulation performance, the variograms 
for 5 realizations were reproduced and compared 
with the variogram of the original dataset (Figure 
9). The results obtained show that all realizations 
reproduce the histograms and variograms 
reasonably well. 

  
Figure 8. Histogram reproduction, randomly 

selected from 50 realizations. 
Figure 9. Empirical variograms for real data 

and five randomly selected realizations. 
 
6.4. Grade-Tonnage curves 
One of the important factors involved for the 
investment of a mining project is a determination 
of risk in grade-tonnage curves that can be 
achieved through geostatistical simulation. By 
comparing these estimation and simulation 
curves,  the effect of the uncertainty on the 
estimated model and average grade will be 
observed. Figure 10 shows the plotted grade-
tonnage curves of all the 50 simulated models and 
kriging estimation method with different cut-off 
grades. The ore reserve tonnage is higher at lower 

cut-off grades, and the tonnage obtained by the 
kriging method is in the middle of all simulated 
curves that can affect the economy of the mining 
project. Therefore, the related risk is more critical 
at lower grades. Since in this work the cut-off 
grade was 0.52%, the frequency of the ore reserve 
for all the 50 realizations was drawn (Figure 11). 
Based on this distribution, the ore reserve is 
between 453,000 and 799,000 tonnes with 95% 
confidential level. The ore reserve in the kriging 
method is 644,525 tonnes . 

  
Figure 10. Grade-tonnage curves for 50 realizations. Figure 11. Ore reserve distribution for SGS-real data 

(cut-off = 0.52%). 

7. Determining optimum stope layout 
The mining method in this ore body is 
longitudinal stoping, a method similar to the sub-
level stoping method. In longitudinal stoping, the 

direction of mining is in the same way as the sub-
level stoping along the strike of the orebody 
(longitudinal direction). This method is designed 
for ore bodies with a thickness in the range of 
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circa 5-20 m [60]. Determination of stope 
dimension in these methods in most cases can be 
achieved by designing the stopes having high 
vertical and short horizontal dimensions or stopes 
having short vertical and long horizontal 
dimensions [61]. For this work, the stope 
dimensions are considered to be 50×20×25 m 
(10×4×5 m blocks in the X,Y,Z direction). Then 
considering the economic factors given in Table 
5, all 50 realizations and kriging model were 
converted to block economic value incorporating 

copper grades. Then 1136 possible stopes were 
generated for each model. After that, according to 
the proposed algorithm, the optimum layout, 
average grade, and metal content of all 
realizations, and the kriging model were obtained. 
For the kriging model, 24 stopes were obtained 
using the algorithm with a value of 15.6 M$, 
while this value for other two realizations 
(simulation 5 and simulation 17) was 14.7 M$ and 
21.8 M$, respectively. 

Table 5. Economic factors. 
Parameter Value 

Mining cost ($/tonne-ore) 20 
Processing cost ($/tonne-ore) 10 
Smelting and refining costs 

($/tonne-metal) 90 

Copper price ($/tonne-metal) 6500 
Recovery (%) 90 

Cut-off (% Cu) 0.52 
 
The economic value and metal content for each 
realization were calculated and studied carefully. 
Figure 12 shows the frequency of economic value 
for all realizations. It can be observed that the 
value varies between 6.7 M$ and 30.7 M$. The 
blue dash line shows the value of the kriging 
model. Figure 13 shows that according to the 
realizations, the minimum and maximum pure 
copper that can be extracted from the mine is 
between 5,227 and 13,583 tonnes, while this value 
for the kriging model is 8,971 tonnes. Moreover, 
in Table 6, details of the final underground limit 
for the realizations and kriging model are 
presented. 
According to the results obtained in this section, it 
can be concluded that a large precentage of 
underground mining limits on the Sequential 

Gaussian Conditional Simulation appoach 
generate a higher economic value as compared to 
the ordinary kriging. Hence, the results illustrate 
that ordinary kiriging based underground mine 
planning can produce misleading outputs, which 
can lead to unrealistic expectations of net present 
value along with mine production scheduling, and 
so on. Since the traditional kriging methods rely 
on a single ore model assumed to be real deposit 
in the underground being mined, it is not able to 
evaluate the uncertainty of economic and 
operational consequences of the underground 
stope layout. On the other hand, the simulation 
methods give a great oppurtunity to describe the 
distribution of ore grade in each one of the 
realizations and quantification of uncertainty. 

  
Figure 12. The economic value frequency for all 

realizations and kriging model. 
Figure 13. The metal content frequency for all 

realizations and kriging model. 
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Table 5. Details of underground mining limit for 
SGS simulations. 

Parameter 
SGS models Kriging 

model Min. Max. Aver
age 

Average grade 
(%) 0.53 0.88 0.67 0.71 

Economic value 
(M$) 6.74 30.71 15.86 15.62 

Copper (tonne) 5257.
6 

1358
3.6 

9250.
4 8971.4 

No. of stopes 12 30 22 24 

8. Conclusions 
Determination of the underground stope layout 
and production scheduling are the most important 
issues in regard to the underground mining. 
Numerous researchers have reported the influence 
of grade and economic uncertainty in 
determination of ultimate open-pit limit and 
production planning. In contrast, a few efforts 
have been made regarding the underground mine 
design under the grade uncertainty condition, 
which is one of the major components of technical 
uncertainty that affects the variability of the 
project. In this work, in the first step, according to 
a new heuristic algorithm, a user-friendly 
computer program called Stope Layout Optimizer 
3D (SLO3D) was developed using the C# object-
oriented programming in order to incorporate the 
influence of grade variability in the final stope 
layout in a 3D space. Subsequently, a set of 
stochastic realizations were produced to solve a 
practical engineering concern in a real copper 
vein, located in the south-west of Iran. The results 
of this research work showed that the ore reserve 
obtained by the kriging method was 644,525 
tonnes, while this value varied between 453,000 
and 799,000 tonnes with 95% confidential level 
for realizations. The economic value of 
underground stopes for all realizations yielded a 
value between 6.7 M$ and 30.7 M$, and for the 
kriging model, it was 15.6 M$. The proposed 
methodology determined the underground stope 
layout over multiple geostatistical realizations 
rather than simply using geostatistical realizations 
in a post-processing framework to assess a layout 
based on a kriging model. According to the results 
obtained, it was observed that the performance of 
a mining project based on a single estimation 
method due to the inability to access uncertainty 
and risk quantification can influence the overall 
accuracy of the mine design and production 
planning, while simulation models obtained by 
geostatistical methods determined the range of 

possible values instead of introducing a definite 
and unique existing value. In this way, it is 
possible to examine the risks and compare with 
the single estimation model. In this research work, 
the effect of grade uncertainty on the 
determination of underground optimum limit was 
studied. 
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  چکیده:

 یاصــل يهااز مؤلفــه یکــی اریــع تیــپروژه در نظــر گرفتــه شــوند. عــدم قطع کیمرتبط با  يهاتیتمام عدم قطع دیبا یامکان سنج نییتع يبرا ،یمعدن يدر پروژه ها
 نیــیتع ياست که بــه طــور گســترده بــرا یمعتبر، روش کردیرو کیبه عنوان  ،يآمار نیزم يساز هی. شبگذاردیم ریپروژه تأث يریرپذییاست که بر تغ یفن تیعدم قطع

 نــهیبه يشــده توســط محققــان بــرا جــادیا يهــاتمیمقاله، تمام الگور نی. در اردیگیمورد استفاده قرار م نیتخم يهاغلبه بر اشکالات روش يبرا سکیر لیتحل تیکم
 هیشــده اســت. بــا اســتفاده از شــب هیته يابتکار تمیالگور س) براساSLO3D(يوتریبرنامه کامپ کیشده است. پس از آن،  یبررس ینیرزمیز يمحدوده معدنکار يساز
 ییســاخته شــده اســت و طــرح نهــا رانیــا یواقع در جنــوب غربــ ینیرزمیمعدن مس ز کی يبرا نگیجیمدل کر کیو  يساز هیشب 50 ،یمتوال یگوس یشرط يساز

بــه  یینهــا جیمقابلــه کنــد. نتــا نــگیجیبه طور موثر با ضــعف مــدل کر تواندیم يآمار نیزم يساز هیکه شب شودیها به صورت جداگانه انجام گرفت. مشاهده مکارگاه
بــه طراحــان  راتییــدامنــه تغ نیــاســت. ا ریــدلار متغ ونیلیم 7/30دلار و  ونیلیم 7/6 نیدستاوردها ب هیکل يبرا يارزش اقتصاد یکه فراوان دهدیدست آمده نشان م

  .رندیبگ يکمتر سکیر ابردر بر يبهتر میمختلف تصم طیتا در شرا کندیکمک م

  .SLO3D ،يابتکار تمیالگور ،يآمار نیزم يساز هیشب ار،یع تیعدم قطع ،ینیرزمیز يمعدنکار کلمات کلیدي:
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