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Abstract 
The uniaxial compressive strength of weak rocks (UCSWR) is among the essential 
parameters involved for the design of underground excavations, surface and underground 
mines, foundations in/on rock masses, and oil wells as an input factor of some analytical 
and empirical methods such as RMR and RMI. The direct standard approaches are 
difficult, expensive, and time-consuming, especially with highly fractured, highly porous, 
weak, and homogeneous rocks. Numerous endeavors have been made to develop indirect 
approaches of predicting UCSWR. In this research work, a new intelligence method, 
namely relevance vector regression (RVR), improved by the cuckoo search (CS) and 
harmony search (HS) algorithms is introduced to forecast UCSWR. The HS and CS 
algorithms are combined with RVR to determine the optimal values for the RVR 
controlling factors. The optimized models (RVR-HS and RVR-CS) are employed to the 
available data given in the open-source literature. In these models, the bulk density, 
Brazilian tensile strength test, point load index test, and ultrasonic test are used as the 
inputs, while UCSWR is the output parameter. The performances of the suggested 
predictive models are tested according to two performance indices, i.e. mean square error 
and determination coefficient. The results obtained show that RVR optimized by the HS 
model can be successfully utilized for estimation of UCSWR with R2 = 0.9903 and MSE 
= 0.0031203. 

1. Introduction 
A proper determination of the uniaxial 
compressive strength of weak rocks (UCSWRs) is 
of significant importance in the design of rock 
mechanics structures, for instance, tunnels, slopes, 
and dams. Nevertheless, there are some impeding 
parameters in the direct determination of UCSWR 
in the laboratory. For example, preparing the 
required rock core samples is often difficult, 
particularly for the rocks that exhibit a significant 
foliation and those that are fractured [1,2]. 
Therefore, a direct determination of UCSWR can 
be time-consuming and costly [3]. Many 
researchers have attempted to find the alternative 
and indirect methods in order to estimate UCS 
using different methods. In this paper, the well–
known research works are addressed. Ghose and 
Chakraborti [4] have suggested an empirical 

relation between the Schmidt rebound number and 
UCS for Indian coal. Meulenkamp, Grima [5] have 
estimated UCS by a back-propagation neural 
network. In their research work, the density, grain 
size, porosity, Equotip hardness reading, and rock 
type were considered as the inputs for the UCS 
estimation. Singh et al. [6] have suggested a 
number of relations between some index factor 
(area weighting, grain size, orientation of weakness 
(foliation) planes, aspect ratio, mineral 
composition, and form factor) and strength 
parameters (UCS, tensile strength, and axial point 
load strength) of schistose rock. Gokceoglu, Zorlu 
[7] have estimated the Young’s modulus and UCS 
of problematic rocks by the regression methods and 
a fuzzy model. Sonmez et al. [8] have utilized a 
fuzzy inference system for estimation of UCS 
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based on the petrographic data. Fener et al. [9] have 
proposed an empirical relation between the UCS 
values and the Schmidt hardness for two 
sedimentary, six igneous, and three metamorphic 
rocks. Kılıç, Teymen [10] have found strong 
relationships between the UCS values and the 
Schmidt hardness for 19 different rock samples. 
Dehghan et al. [11] have utilized feed forward 
neural network to estimate UCS. In their research 
work, porosity, Schmidt hammer rebound number, 
p-wave velocity, and point load index were 
considered as the inputs to estimate UCS. Cevik et 
al. [12], for sedimentary rock samples, have 
evaluated the application of artificial neural 
network (ANN) in forecasting UCS. Yagiz et al. 
[13] have developed the non-linear regression and 
ANN techniques to estimate UCS for 54 carbonate 
rocks. Minaeian and Ahangari [14] have suggested 
an empirical relationship between the UCS values 
and the Schmidt hardness for some samples of 
weak conglomeratic rock. Mishra, Basu [15] have 
used the fuzzy inference system model for the 
prediction of UCS in three different rocks. 
Yesiloglu-Gultekin et al. [16], for the granite 
samples in Turkey, have proposed the superiority 
of the adaptive neuro-fuzzy inference system 
(ANFIS) model compared to the ANN model in 
forecasting UCS. Aboutaleb et al. [17] have 
evaluated the relationship between UCS with 
dynamic poisson ratio and the dynamic Young’s 
modulus using a simple and multivariate regression 
analysis, an ANN, and support vector regression 
(SVR).   
Although ANN is an alternative for forecasting 
UCS, it is a trouble to determine the architecture 
for ANN, and the stochastic events are present 
during the building of the model. Also ANNs do 
have some shortages: they have a slow learning 
rate. In contrast, SVR is deterministic and global. 
However, it still has the difficulty to determine the 
factors involved (e.g. penalty weight C and 
insensitivity ε) and selected a suitable kernel 
function. The relevance vector regression (RVR) 
approach is a good competitor of SVR. In the RVR 
case, there is no restriction on the basis functions, 
unlike the SVR framework, where the basis 
functions must satisfy the Mercer’s kernel theorem 
[18,19]. Also the kernel width σ is the only factor 
to be tuned in the RVR method. Therefore, the 
sparse RVR method could generalize better with a 
very less computation time than SVR. In this 
research work, the improved RVR is suggested for 
the indirect estimation of UCSWR. The 
optimization algorithms applied for optimizing 
RVR are the harmony search (HS) and cuckoo 

search (CS) algorithms. The HS and CS algorithms 
are utilized to choose the suitable kernel 
parameters of their RVR method. The goodness of 
each hybrid method was considered using the data 
available in the literature.  

2. Materials and methods 
In this part, first, the literature review relevant to 
the RVR model is described, and then there are 
descriptions about the HS and CS algorithms.  

2.1. Relevance vector regression (RVR) 
RVR, presented by Tipping [18], is actually a 
special case of a Gaussian process. Unlike SVR, 
the uncertainty in the output estimation value can 
be characterized. Also RVR has a better sparseness 
than SVR, which can reduce online prediction 
complexity. In addition, RVR does not require to 
estimate the error/margin trade-off parameter C, 
which can reduce the computational time, and the 
kernel function does not need to satisfy the Mercer 
condition. For those advantages of the RVR 
approach compared with SVR, RVR has received 
a great attention, and is successfully employed in 
the regression problems of estimation [20-22].  
In the RVR approach, supposing the system is 
multiple-input-single-output, given a dataset of N 
input vectors with N corresponding scalar-valued 
target {ݔ , }ୀଵேݐ , the output ݐ = ଵݐ) , . . . ,  ே)்canݐ
be expressed as the sum of an approximation 
vectorݕ = ,(ଵݔ)ݕ) . . . ்((ேݔ)ݕ,

.The targets are 

from the model with additive noise: 

ݐ = ݔ)ݕ (ݓ, + ݁ (1) 

where w is the weight vector and e is the random 
noise. The function y(x) is defined as follows: 

(ݓ,ݔ)ݕ = ݓݔ)ܭ, (ݔ
ே

ୀଵ

+ ݓ = ݓ(ݔ)ߔ
ே

ୀଵ

 

(2) 
 x  is given as(ݔ)ߔ =

,ݔ)ܭ,1] ,ݔ)ܭ,(ଵݔ ,(ଶݔ . . . ,ݔ)ܭ,  .[(ேݔ

The targets can be given as(ݐ|ݔ) =
 The likelihood of the complete .(ଶߪ,(ݔ)ݕ|ݐ)ܰ
dataset can be written as: 

(ଶߪ,ݓ|ݐ) =
1

ଶߪߨ2
exp ൜−

1
ଶߪ2

ݐ‖ −  ൠ (3)‖ݓ(ݔ)ߔ

whereݓ = ,ଵݓ,ݓ) . . . ݐ  , (ேݓ, = ,ଵݐ) ଶݐ , . . . ,  ,(ேݐ
and   is the ܰ × (ܰ + 1) design matrix. Here, the 
RVR approach adopts a Bayesian perspective and 
constrains w and 2  by defining a prior probability 
distribution over the weights: 
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(ߙ|ݓ) = ෑܰ(ݓ|0,ߙିଵ)
ே

ୀଵ

=
1

(ேାଵ)ߨ2 ଶ⁄ ෑߙ
ଵ ଶ⁄

ே

ୀଵ

exp ቆ−
ଶݓߙ

2
ቇ 

(4) 

(ߙ) = ෑ݃ܽ݉݉ܽ(ߙ|ܽ, ܾ)
ே

ୀଵ

 (5) 

(ߚ) = ,ܽ|ߚ)ܽ݉݉ܽ݃ ܾ) (6) 

where b = 2 , a is an N+1 hyper-parameter, and 
gamma (ߙ|ܽ, ܾ)

 
is defined as: 

(ܾ,ܽ|ߙ)ܽ݉݉ܽ݃

= (ܽ)߁ିଵ݁ିఈߙଵܾି(ܽ)߁1 = න ݐିଵ݁ି௧݀ݐ
ஶ



 (7) 

Also the posterior over weights can be considered 
through the Bayesian rule: 

(ଶߪ,ߙ,ݐ|ݓ) =
(ߙ|ݓ)(ଶߪ,ݓ|ݐ)

,ߙ|ݐ) (ଶߪ

=
1

(ேାଵ)ߨ2 ଶ⁄ |∑|ିଵ ଶ⁄ exp ൜−
1
2

ݓ) − ்(ߤ ݓ)
ିଵ

−  ൠ(ߤ

(8) 

where the posterior covariance and mean are 
defined as follow: 

∑ = ߔ2்ߔଶ2ିߪ) +  ଵ (9)ି(ܣ

ߤ =  (10) ݐ்ߔ∑ଶିߪ

whereܣ = ଶߙ,ଵߙ)݃ܽ݅݀ , . . .  ே). The likelihoodߙ,
distribution over the training targets is given by 
Tipping [18]: 

(ଶߪ,ߙ|ݐ) = ∫ ,ݓ|ݐ) ݓ݀(ߙ|ݓ)(ଶߪ

= ேି(ߨ2) ଶ⁄ ଵି|ܥ| ଶ⁄ exp ൜
1
2 ݐ

 ൠݐଵିܥ்
(11) 

where the covariance is given by 
2 1 TC I A      . A detailed explanation of the 

RVR approach can be found in [18,23]. 

2.2. HS algorithm 
HS [24] is a metaheuristic algorithm that simulates 
the improvisation process of musicians. The HS 
algorithm does not require the initial values for the 
decision variables, and uses a stochastic random 
search that is based on the harmony memory 
considering the rate and the pitch adjusting rate. 
The method is very easy to implement, and there 
are few parameters to adjust. HS is described 
below:  

Step 1. Initialization of the optimization problem and 
algorithm parameters 
 The optimization problem can be defined as: 
 Minimize f(x) subject to ݔ ≤ ݔ ≤ ݔ   (݅ =
1,2, . . . ,ܰ), where xiU and xiL are the upper and lower 
bounds for decision variables, respectively. The HS 
algorithm parameters are also specified in this step. 
They are the harmony memory size (HMS) or the 
number of solution vectors in harmony memory, pitch 
adjusting rate (PAR), harmony memory considering rate 
(HMCR), distance band width (bw), and the number of 
improvisations (K) or stopping criterion. K is the same 
as the total number of function evaluations. 

Step 2. Harmony memory initialization  
HS is initialized in the harmony memory (HM). The 
harmony memory is a memory location, where all the 
solution vectors (sets of decision variables) are stored. 
The initial harmony memory is randomly generated in 
the region [xiL, xiU] (i = 1, 2,. . ., N). This is done based 
on the following equation:  

ݔ
 = ݔ + ()݀݊ܽݎ × ݔ) − ݆   (ݔ

= 1,2, . . .  ܵܯܪ,
(12) 

where rand() is a random number from a uniform 
distribution of [0,1]. 

Step 3. Improvise  a  new  harmony  from  HM. ݔᇱ =
ଵᇱݔ) ଶᇱݔ, , . . . , ᇱݔ )is  improvised  based  on  the  following  
three  mechanisms [25-27]: random selection, memory 
consideration, and pitch adjustment. In the random 
selection, the value of each decision variable in the new 
harmony vector is randomly chosen within the value 
range with a probability of (1 - HMCR) . HMCR, which 
varies between 0 and 1, is the rate of choosing one value 
from the historical values stored in HM, and (1 − 
HMCR) is the rate of randomly selecting one value from 
the possible range of values [28]. 

ᇱݔ = ᇱݔ

∈ ൛ݔଵ, ,ଶݔ . . . ,  ுெௌൟ    with  probability  HMCR (13)ݔ
ᇱݔ = ᇱݔ ∈    with  probability  (1 -HMCR)ݔ

The value for each decision variable obtained by the 
memory consideration is examined to determine 
whether it should be pitch adjusted. If the pitch 
adjustment decision for '

ix  is made with a probability of 

PAR, '
ix is replaced with  ' ( 1, 1) bwix u    , where 

bw is an arbitrary distance band width for the continuous 
design variable, and ( 1, 1)u    is a uniform distribution 
between −1 and 1. The value of (1 − PAR) sets the rate 
of performing nothing. Thus pitch adjustment is applied 
to each variable as follows: 

ݔ
ᇱ

= ݔ
ᇱ ± ,1−)ݑ +1)

×  with  probability  HMCR   (14)    ݓܾ

ݔ
ᇱ = ݔ

ᇱ    with  probability  HMCR × (1-PAR) 



Fattahi./ Journal of Mining & Environment, Vol. 11, No. 2, 2020 

508 

Step 4.Training the SVR model and fitness evaluation 
For this purpose, the whole dataset is separated into two 
independent and non-overlapping datasets of testing set 
and training set arbitrarily; the former is employed for 
the training and optimal parameter selection procedures 
and the latter assesses the model prediction robustness 
and ability.  

Step 5. Harmony memory update 
After a new harmony vector xnew is generated, the 
harmony memory will be updated. If the fitness of the 
improvised harmony vector ݔ௪ =
ଵ௪ݔ) , ଶ௪ݔ , . . . ,  ே௪) is better than that of the worstݔ
harmony, the worst harmony in HM will be replaced 
with xnew and become a new member of the HM. 

Step 6. Termination 
Repeat steps 3-5 until the stopping criterion (maximum 
number of improvisations K) is met. 
In this paper, the kernel factor of Gaussian RBF kernel 

ݔ)ோிܭ) , (ݔ = exp൬−
ฮ௫ି௫ೕฮ

మ

ఊమ
൰) is selected by the HS 

algorithm. 

2.3. CS algorithm 
The CS algorithm [29] is inspired by some species 
of a bird family called cuckoo because of their 
special lifestyle and aggressive reproduction 
approach [30-32]. In order to describe the CS 
algorithm, the following three idealized rules are 
used [32]: (a) each cuckoo lays one egg at a time 
and dumps it in a randomly selected nest; (b) the 
best nests with high quality of eggs are carried over 
to the next generations; and (c) the accessible host 
nest number is constant, and the egg, which is laid 
using a cuckoo, is discovered by the host bird with 
a probability in the range of [0, 1]. A detailed 
description of the CS algorithm can be found in 
[29]. Also Figure 1 presents a flow chart of the CS 
algorithm. In this work, the kernel parameter of 
Gaussian RBF kernel (ܭோி(ݔ , (ݔ =

exp ቆ−
ฮ௫ି௫ೕฮ

మ

ఊమ
ቇ) is selected by the CS algorithm. 

 
Figure 1. A flow chart of the CS algorithm [29]. 

2.4. RVR Optimized by HS and CS Algorithms 
In RVR, the HS and CS algorithms are applied as 
an optimizer for the hyper-parameters of RVR. 
Usually, RVR is hybridized by the HS and CS 
algorithms, where here, the prediction results 
achieved by RVR act as a fitness function 
evaluation. The optimized value of RVR hyper-

parameters can be obtained after a maximum 
iteration number has been reached. In this work, 
the objective function is served by root mean 
squared error (RMSE), where the lower the RMSE, 
the better is the estimation accuracy. The procedure 
of optimizing the RVR variables with the HS and 
CS algorithms is presented in Figure 2.  
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Figure 2. A flowchart of the RVR-CS and RVR-HS models for forecasting UCSWR.  

3. Forecasting UCSWR using RVR-HS and 
RVR-CS models 
In order to forecast UCSWR, all the relevant 
parameters should be determined, due to the fact 
that RVR-HS and RVR-CS work based on the 
given data and do not have a previous knowledge 
about the subject of prediction. The following 
sections describe the input and output parameters 
and prediction of UCSWR using the RVR-HS and 
RVR-CS models. 

3.1. Database information 
The main scope of this work is to implement the 
above methodology in the problem of UCSWR. 

The dataset applied in this work for determining 
the relationship among the set of input and output 
variables are gathered from the open source 
literature [33]. A dataset that includes 40 case 
studies was employed in the current study, while 
32 data points (80%) were utilized for constructing 
the models and the remainder (8 data points) was 
utilized for the model performance evaluation. The 
partial datasets in Table 1 contain data for 5 data 
points: the bulk density (BD), point load index test 
(Is (50)), Brazilian tensile strength test (BTS), 
ultrasonic test (Vp), and UCSWR.  

Table 1. Partial dataset used for training and testing model [33]. 

Rock type  
Input parameters Output parameter 

BD 
 (Kg/m3) 

BTS  
(MPa)  

Is(50)  
(MPa)  

Vp 
(m/s) 

UCSWR  
(MPa) 

Shale 3516 3.8 3.9 2897 55.9 
Shale 3,435 3.7 3.7 2,857 47.3 

Iron pan 2,455 1.7 0.4 1,820 8.4 
Iron pan 2,522 1.6 0.5 1,852 14.4 

Old alluvium 2,236 2.7 0.2 1,909 14.5 
 

3.2. Performance Criterion  
To measure the accuracy, the difference between the 
output of the model and the real output is considered as 
the error and represented in two ways including mean 
squared error (MSE) and squared correlation coefficient 
(R2) [34-40]. Let tk be the actual value, ̂ݐ be the 
predicted value of the kth observation, and n be the 
number of observations; then MSE and R2 could be 
defined, respectively, as follow: 

ܧܵܯ =
1
݊
(ݐ − )ଶݐ̂


ୀଵ

 (15) 

ܴଶ = 1−
 ݐ) −


ୀଵ )ଶݐ̂

 ଶݐ

ୀଵ −

 ଶݐ̂

ୀଵ
݊

 (16) 

3.3. Algorithm Configuration  
In the proposed RVR-HS and RVR-CS, many 
parameters are required to be set carefully. In the 
CS algorithm, the maximum iteration number = 50, 
number of nests = 8, population number (number 
of cuckoos) = 25, discovery rate of alien 
eggs/solutions = 0.75, and beta = 3.2. Also in the 
HS algorithm, the maximum iteration number = 50, 
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population number = 25, harmony memory 
consideration rate = 0.4, pitch adjustment rate = 
0.1, number of new harmonies = 15, and fret width 
damp ratio = 0.995. In order to obtain a good 
performance of the RVR model, the parameter is 
set differently in each operation process. At last, 
the one much better than the mean value is chosen 
in this work. 

4. Results and Discussion  
In this work, the RVR-HS and RVR-CS models 
were utilized to build a prediction model for 
forecasting UCSWR from the available data using 
MATLAB environment. All data (40 data points) 
were randomly divided into two subsets: 80% of 
the total data was allotted to train data of model 
construction and 20% of the total data was 
allocated for test data used to assess the reliability 
of the developed model. In these models, BD, BTS, 

Is (50), and Vp were utilized as the input parameters, 
while UCSWR was the output parameter.  
In the data-driven system modeling methods, some 
pre-processing steps are commonly implemented 
prior to any calculations to eliminate any outliers, 
missing values or bad data. This step ensures that 
the raw data retrieved from the database is perfectly 
suitable for modeling. In order to soften the 
training procedure and improve the accuracy of 
prediction, all data samples are normalized to adapt 
to the interval [0, 1] according to a linear mapping 
function. After modeling, a correlation between the 
estimated values of UCSWR by the RVR-HS and 
RVR-CS models and measured values for training 
and testing phases is shown in Figures. 3 and 4. As 
shown in these figures, the results of the RVR-HS 
model in comparison with the actual data show a 
good precision of the RVR-HS model. 

 
(a) 

 
(b) 

Figure 3. Correlation between the measured and estimated UCSWR using the RVR-HS model for a) training 
datasets b) testing datasets. 
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(a) 

 
(b) 

Figure 4. Correlation between the measured and estimated UCSWR using the RVR-CS model for a) training 
datasets b) testing datasets. 

Also the performance analysis of the RVR-HS and 
RVR-CS models for predicting UCSWR is shown 
in Table 2. As presented in this table, the RVR-HS 
model with R2 = 0.9903 and MSE = 0.0031203 is 
found to be the best predictive model. 
Table 2. Performance analysis of the RVR-HS and RVR-

CS models for forecasting UCSWR. 

Description MSE R2 

RVR-HS 
model 

Training 0.0022038 0.9889 
Testing 0.0031203 0.9903  

RVR-CS 
model 

Training 0.0022207 0.9884 
Testing 0.0039557 0.9684 

In addition, according to Figure 5 and Table 3, the 
MSE and R2 of RVR-HS model (for 
training/testing = 80/20) is less than those for the 
other models in almost all the cases, indicating that 
it can be a better choice for a prediction process. It 
is worth mentioning that the presented model was 
developed based upon the limited sets of data, and 
cannot be generalized for all rocks. However, it is 
open for more development if more data is 
available. 

Table 3. Comparing the performance of RVR-HS model in forecasting UCSWR with different fractions of 
training and testing data.  

Training/testing 
 (%) Model MSE 

(Train) 
MSE 
(Test) 

R2 
(Train) 

R2 
(Test) 

90/10 RVR-HS 0.0023631 0.0044612 0.98032 0.99023 
80/20 RVR- HS 0.0022038 0.0031203 0.98194 0.99037   
70/30 RVR- HS 0.002483 0.005784 0.97731 0.98681   
60/40 RVR- HS 0.0057377 0.022629      0.96933 0.96977   
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Figure 5. Comparing performance of the RVR-HS model with different fractions of training and testing data. 

5. Conclusions 
UCSWR is a very important parameter for rock 
classification and design of structures either upon 
or inside rocks. In addition, this parameter is 
essential for judgment about its suitability for 
various construction purposes. However, 
determination of UCSWR is time-consuming and 
expensive, and involves destructive tests. 
Therefore, an indirect test is often used to predict 
UCSWR. In this paper, a new approach, namely 
RVR optimized by the HS and CS algorithms, was 
proposed for predicting UCSWR. In our 
methodology, the HS and CS algorithms were 
applied as the optimization tool for determining the 
optimal value of user-defined parameters existing 
in formulation of RVR. The optimization 
implementation increases the performance of the 
RVR model. The following conclusions were 
obtained:  

 RVR-HS with R2 = 0.9903 and MSE = 0.0031203 
is a reliable system modeling technique for 
forecasting UCSWR with a highly acceptable 
degree of accuracy and robustness. 

 Application of evolutionary algorithms 
significantly increases the speed and accuracy of 
finding the optimal values of kernel parameters. 

 It is worth mentioning that the presented model 
was developed based upon the limited sets of data, 
and cannot be generalized for all rocks. However, 
it is open for more development if more data is 
available. 

Referwnces 
[1]. Singh, R., Kainthola, A. and Singh, T. (2012). 
Estimation of elastic constant of rocks using an ANFIS 
approach. Appl Soft Comput. 12 (1): 40-45. 

[2]. Armaghani, D.J., Mohamad, E.T., Momeni, E. and 
Narayanasamy, M.S. (2015). An adaptive neuro-fuzzy 
inference system for predicting unconfined compressive 
strength and Young’s modulus: a study on Main Range 
granite. Bull Eng Geology Envir. 74 (4): 1301-1319. 

[3]. Kahraman, S., Fener, M. and Kozman, E. (2012). 
Predicting the compressive and tensile strength of rocks 
from indentation hardness index. J South Afr Inst Min 
Metall. 112 (5): 331-339. 

[4]. Ghose A Empirical strength indices of Indian coals-
an investigation. In: The 27th US Symposium on Rock 



Fattahi./ Journal of Mining & Environment, Vol. 11, No. 2, 2020 

513 

Mechanics (USRMS), 1986. American Rock Mechanics 
Association.  

[5]. Meulenkamp, F. and Grima, M.A. (1999). 
Application of neural networks for the prediction of the 
unconfined compressive strength (UCS) from Equotip 
hardness. Int J Rock Mech Min Sci. 36 (1): 29-39. 

[6]. Singh, V., Singh, D. and Singh, T. (2001). 
Prediction of strength properties of some schistose rocks 
from petrographic properties using artificial neural 
networks. Int J Rock Mech Min Sci. 38 (2): 269-284. 

[7]. Gokceoglu, C. and Zorlu, K. (2004). A fuzzy model 
to predict the uniaxial compressive strength and the 
modulus of elasticity of a problematic rock. Eng Appl 
Artif Intel. 17 (1): 61-72. doi:https://doi.org/10.1016/j. 
engappai.2003.11.006. 

[8]. Sonmez, H., Tuncay, E. and Gokceoglu, C. (2004). 
Models to predict the uniaxial compressive strength and 
the modulus of elasticity for Ankara Agglomerate. Int J 
Rock Mech Min Sci. 41 (5): 717-729. 

[9]. Fener, M., Kahraman, S., Bilgil, A. and Gunaydin, 
O. (2005). A comparative evaluation of indirect 
methods to estimate the compressive strength of rocks. 
Rock Mech Rock Eng. 38 (4): 329-343. 

[10]. Kılıç, A. and Teymen, A. (2008). Determination of 
mechanical properties of rocks using simple methods. 
Bull Eng Geology Envir. 67 (2): 237-244. 

[11]. Dehghan, S., Sattari, G., Chelgani, S.C. and 
Aliabadi, M. (2010). Prediction of uniaxial compressive 
strength and modulus of elasticity for Travertine 
samples using regression and artificial neural networks. 
Min Sci Tech. 20 (1): 41-46. 

[12]. Cevik, A., Sezer, E.A., Cabalar, A.F. and 
Gokceoglu, C. (2011). Modeling of the uniaxial 
compressive strength of some clay-bearing rocks using 
neural network. Appl Soft Comput. 11 (2): 2587-2594. 

[13]. Yagiz, S., Sezer, E. and Gokceoglu, C. (2012). 
Artificial neural networks and nonlinear regression 
techniques to assess the influence of slake durability 
cycles on the prediction of uniaxial compressive 
strength and modulus of elasticity for carbonate rocks. 
In J Numer Anal Met Geomech. 36 (14): 1636-1650. 

[14]. Minaeian, B. and Ahangari, K. (2013). Estimation 
of uniaxial compressive strength based on P-wave and 
Schmidt hammer rebound using statistical method. Arab 
J Geosci. 6 (6): 1925-1931. 

[15]. Mishra, D. and Basu, A. (2013). Estimation of 
uniaxial compressive strength of rock materials by index 
tests using regression analysis and fuzzy inference 
system. Eng Geol. 160: 54-68. 

[16]. Yesiloglu-Gultekin, N., Gokceoglu, C. and Sezer, 
E.A. (2013). Prediction of uniaxial compressive strength 
of granitic rocks by various nonlinear tools and 
comparison of their performances. Int J Rock Mech Min 
Sci. 62: 113-122. 

[17]. Aboutaleb, S., Behnia, M., Bagherpour, R. and 
Bluekian, B. (2018). Using non-destructive tests for 
estimating uniaxial compressive strength and static 
Young’s modulus of carbonate rocks via some modeling 
techniques. Bull Eng Geology Envir. 77 (4): 1717-1728. 
doi:10.1007/s10064-017-1043-2. 

[18]. Tipping, M.E. (2001). Sparse Bayesian learning 
and the relevance vector machine. J machine learn 
research. 1 (Jun): 211-244. 

[19]. Nisha, M.G., Pillai, G. (2013). Nonlinear model 
predictive control with relevance vector regression and 
particle swarm optimization. J Control Theory App. 11 
(4): 563-569. 

[20]. Qin, Y. and Wang, F. (2011). Tunneling-induced 
ground surface settlement prediction based on relevance 
vector machine. In: 2011 International Conference on 
Electric Technology and Civil Engineering (ICETCE). 
IEEE, pp. 925-927. 

[21]. Gholami, R., Moradzadeh, A., Maleki, S., Amiri, 
S. and Hanachi, J. (2014). Applications of artificial 
intelligence methods in prediction of permeability in 
hydrocarbon reservoirs. J Pet Sci Eng. 122: 643-656. 

[22]. Lou, J., Jiang, Y., Shen, Q. and Wang, R. (2018). 
Failure prediction by relevance vector regression with 
improved quantum-inspired gravitational search. 
Journal of Network and Computer Applications. 103: 
171-177. 

[23]. Tipping ME The relevance vector machine. In: 
Advances in neural information processing systems. 
2000. pp 652-658. 

[24]. Geem, Z.W. (2009). Music-inspired harmony 
search algorithm: theory and applications, vol 191. 
Springer Verlag,  

[25]. Geem, Z.W., Kim, J.H. and Loganathan, G. 
(2001). A new heuristic optimization algorithm: 
harmony search. Simulation. 76 (2): 60-68. 

[26]. Moh’d Alia, O. and Mandava, R. (2011). The 
variants of the harmony search algorithm: an overview. 
Artificial Intelligence Review. 36 (1): 49-68. 

[27]. Yuan, X., Zhao, J., Yang, Y. and Wang, Y. (2014). 
Hybrid parallel chaos optimization algorithm with 
harmony search algorithm. Appl Soft Comput. 17: 12-
22. 

[28]. Jaberipour, M. and Khorram, E. (2010). Two 
improved harmony search algorithms for solving 
engineering optimization problems. Communications in 
Nonlinear Science and Numerical Simulation 15 (11): 
3316-3331 

[29]. Rajabioun, R. (2011). Cuckoo optimization 
algorithm. Appl Soft Comput. 11 (8): 5508-5518. 

[30]. Yang, X.S. and Deb, S. (2010). Engineering 
optimisation by cuckoo search. Int J Math Model Num 
Optim. 1 (4): 330-343. 

https://doi.org/10.1016/j.


Fattahi./ Journal of Mining & Environment, Vol. 11, No. 2, 2020 

514 

[31]. Valian, E., Mohanna, S. and Tavakoli, S. (2011). 
Improved cuckoo search algorithm for feedforward 
neural network training. International Journal of 
Artificial Intelligence & Applications. 2 (3): 36-43. 

[32]. Yildiz, A.R. (2013). Cuckoo search algorithm for 
the selection of optimal machining parameters in milling 
operations. Int J Adv Manuf Tech. 64 (1-4): 55-61. 

[33]. Mohamad, E.T., Armaghani, D.J., Momeni, E. and 
Abad, S.V.A.N.K. (2015). Prediction of the unconfined 
compressive strength of soft rocks: a PSO-based ANN 
approach. Bull Eng Geology Envir. 74 (3): 745-757. 

[34]. Fattahi, H. (2016). Application of improved 
support vector regression model for prediction of 
deformation modulus of a rock mass. Eng Comput. 32 
(4): 567-580. 

[35]. Fattahi H. and Moradi, A. (2017). Risk Assessment 
and Estimation of TBM Penetration Rate Using RES-
Based Model. Geotech Geol Eng. 35 (1): 365-376. 

[36]. Fattahi, H. (2016). Adaptive neuro fuzzy inference 
system based on fuzzy c–means clustering algorithm, a 
technique for estimation of TBM penetration rate. Int J 
Optim Civil Eng. 6 (2): 159-171. 

[37]. Fattahi, H. (2017). Risk assessment and prediction 
of safety factor for circular failure slope using rock 
engineering systems. Environ Earth Sci. 76 (5): 224. 

[38]. Fattahi, H. (2017). Applying soft computing 
methods to predict the uniaxial compressive strength of 
rocks from schmidt hammer rebound values. Computat 
Geosci. 21 (4): 665-681. 

[39]. Fattahi, H. and Moradi, A. (2018). A new approach 
for estimation of the rock mass deformation modulus: a 
rock engineering systems-based model. Bull Eng 
Geology Envir. 77 (1): 363-374. 

[40]. Babanouri, N. and Fattahi, H. (2018). Constitutive 
modeling of rock fractures by improved support vector 
regression. Environ Earth Sci. 77 (6): 243. 



 1399شماره دوم، سال  ازدهم،ی، دوره زیستپژوهشی معدن و محیط -فتاحی/ نشریه علمی

 

  

 هاي ضعیفیک روش جدید براي تخمین مقاومت فشاري تک محوره سنگ

  *هادي فتاحی

  گروه مهندسی ژئومکانیک، دانشکده مهندسی علوم زمین، دانشگاه صنعتی اراك، ایران

  9/3/2020، پذیرش 24/1/2020ارسال 

  h.fattahi@arakut.ac.ir* نویسنده مسئول مکاتبات: 

  

  چکیده:

هاي نفتی هاي ســنگی و چاهاز جمله پارامترهاي مهم در طراحی فضــاهاي زیرزمینی، معادن روباز و زیرزمینی، پی فیضــع يهاتک محوره ســنگ يمقاومت فشــار
هاي استاندارد مستقیم براي تعیین این پارامتر سخت، شود. روشاستفاده می RMIو  RMRهاي تحلیلی و تجربی مانند است که به عنوان پارامتر ورودي در روش

 میرمستقیغ هايروشتوسعه  يبرا متعددي يهاتلاشلذا  هایی با شکستگی زیاد، با تخلخل بالا، ضعیف و ناهمگن.پرهزینه و زمانبر است علی الخصوص در سنگ
بهبود ارتباط بردار  ونیرگرس یعنی، دیروش هوشمند جد کی، یقاتیکار تحق نیدر ا انجام شده است. فیضع ياهتک محوره سنگ يمقاومت فشار ینیب شیپ يبرا
سط  افتهی ستجوهاي الگوریتمتو ستجو وفاخته  يج شاری نیبشیپ يبرا یهارمون يج سنگ يمقاومت ف ست. یمعرف فیضع يهاتک محوره  هاي الگوریتم شده ا

 يهاکنند. مدل نییتع ارتباطبردار  ونیرگرس پارامترهاي يرا برا نهیبه ریشوند تا مقادیم بیترک ارتباطبردار  ونیبا رگرس یهارمون يجستجو وفاخته  يجستجو
بکار گرفته موجود  يهاداده براي) ارتباطبردار  ونیرگرسـ-فاخته  يجسـتجو الگوریتمو  ارتباطبردار  ونیرگرسـ-یهارمون يجسـتجو الگوریتمشـده ( يسـاز نهیبه

تک محوره  يمقاومت فشــارو ، يبعنوان ورود کیاولتراســون شیآزمانتایج و  اينقطه يبارگذار ص، شــاخیلیبرز ی، مقاومت کشــشــیها از چگالمدل نی. در اشــدند
مورد  نییتع بیخطا و ضــرمربع  نیانگیم یعنیبا دو شــاخص عملکرد،  ینیب شیپ يهاعملکرد مدل شــود.یاســتفاده م یپارامتر خروج بعنوان فیضــع يهاســنگ

شان م جینتا ارزیابی قرار گرفتند. ست آمده ن سیبه د سط  نهیبه ارتباطبردار  ونیدهد که رگر ستجو الگوریتمشده تو مقاومت  نیتخم يتواند برایم یهارمون يج
  استفاده شود.آمیزي  تیموفق طوربه 9903/0 نییتع بیو ضر 0031203/0ي خطامربع  نیانگیبا م فیضع يهاتک محوره سنگ يفشار

  .، الگوریتم جستجوي هارمونی، الگوریتم جستجوي فاختهبردار ارتباط ونیرگرس، فیضع يهاسنگ ،تک محوره يمقاومت فشار کلمات کلیدي:
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