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Abstract 
The exploration methods are divided into the direct and indirect categories. Among these, 
the indirect geophysical methods are more time- and cost-effective compared with the 
direct methods. The target of the geophysical investigations is to obtain an accurate image 
from the underground features. The Induced polarization (IP) is one of the common 
methods used for metal sulfide ore detection. Since metal ores are scattered in the host 
rock in the Zarshouran mine area, IP is considered as a major exploration method. Parallel 
to IP, the resistivity data gathering and processing are done to get a more accurate 
interpretation. In this work, we try to integrate the IP/RS geophysical attributes with 
borehole grade analyses and geological information using the cuckoo search machine-
learning algorithm in order to estimate the silver grade values. The results obtained show 
that it is possible to estimate the grade values from the geophysical data accurately, 
especially in the areas without drilling data. This reduces the costs and time of the 
exploration and ore reserves estimation. Comparing the results of the intelligent inversion 
with the numerical methods, as the major tools to invert the geophysical data to the ore 
model, demonstrate a superior correlation between the results. 

1. Introduction 
The geophysical methods are widely used in 
underground deposit explorations. These methods 
provide time- and cost-effective valuable 
information from the underground layers without 
drilling (Selley et al., 2005).  Among the different 
geophysical methods, the induced polarization and 
resistivity methods are the best for exploration of 
the Carlin sulfide gold deposits (Yuval, 1995; 
Hasani Pak & Shoja-at, 2000). Douglas has used 
the induced polarization and resistivity data to 
identify the depth of the mineralization (Douglas et 
al., 1999).  
On the other hand, the non-linearity and noise 
reduction are the most significant characteristics of 
the artificial neural networks (ANNs). One of the 
usages of these networks, especially when they are 
supervised (as machine-learning tools), is ore grade 

estimation in geology and mining engineering. In 
order to do this, ANN is trained to find the pattern 
between the input (coordinate and geophysical 
attributes) and the output (grade) data. Different 
parameters influence the grade distribution, some 
of which are not considered in the mathematical 
models. Almost in all the grade estimation 
methods, the most considerable item is the distance 
to the known grade; hence, many other factors such 
as geology, rock mechanics, and ore shape and type 
should be considered. These parameters can be 
regarded as the geophysical, geochemical, and 
other data formats. Knowing the best places for 
exploration boreholes, which can be concluded 
from an accurate grade model, leads us to reduce 
the costs of drilling and predict the shape and the 
status of the ore body. In order to find this model, 
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it is necessary to integrate the different above-
mentioned data formats. Without integrating and 
processing the data, it is impossible to find the 
optimum places for drilling (Porwal, 2006). The 
machine-learning algorithms are powerful tools to 
integrate different data and extract the pattern 
between the input and output values (Bishop, 
1995).  
Singer and Kouda have used ANNs to estimate the 
distance from ore veins (Singer & Kouda, 1997).  
They have also utilized the probability artificial 
neural networks for the ore vein classification. In 
1999, they made a comparison between the 
potential maps produced from ANNs and the 
weight of evidence methods (Singer & Kouda, 
1999). The results obtained showed fewer error 
values for the test data in the ANN model (2%) 
compared to the 23% error in the weight of the 
evidence method. Brown et al. (2000 & 2003) have 
integrated GIS and ANN to produce the 1:100,000 
ore potential map. They applied multi-layer 
perceptron (MLP) artificial neural networks with a 
68% accuracy in map production. The most 
important weak point of MLPs is the influence of 
the small numbers of the input data on the accuracy 
of the model, which can be seen in this work. 
Hosseinali and Alesheikh have used MLPs to 
weigh different data layers and produce the copper 
potential map (Hosseinali & Alesheikh, 2008). The 
most significant part of their work was to use 
ANNs in order to find the shape of the ore body. 
Harris and Pan have employed the probability and 
regression ANNs to detect the ore veins (Harris & 
Pan, 1999). The results of their work demonstrated 
a better accuracy in the vein location prediction 
using the probability networks. Some scientists 
have used the integration of ANNs and other 
methods for a potential map production such as the 
integration of ANNs and remote sensing (Sanchez 
et al., 2003). Others have integrated ANNs with the 
probability rules (Skabar, 2005).  
Many studies have been done to integrate the 
geophysical data using the artificial neural 
networks such as processing the ground-
penetrating radar (GPR) data (Poulton & El-Fouly, 
1991).  Polton and Steinburg have integrated the 
electromagnetic data using ANNs (Poulton et al., 
1992). Spichak and Popoa have made progress on 
the magnetotelluric data via optimizing the ANN 

algorithm (Spichak & Popova, 2000). Some 
research works have been done to gain data on 
inversion resistivity using ANNs (El-Qady & 
Ushijima, 2001; Calderón-Macías et al., 2001; 
Singh et al., 2005). Alimoradi et al. have used a 
probability supervised neural network to integrate 
the magnetic geophysical data in order to estimate 
the depth of dikes (Alimoradi et al., 2011). In this 
work, the geophysical data obtained from 17 
profiles in the Zarshouran gold mine was integrated 
using the new supervised Levenberg-Marquardt-
based backpropagation algorithm trained with the 
cuckoo search (Nazri et al., 2013) to estimate the 
values of silver grade in the areas without drilling 
data. We considered 75 data points obtained from 
six boreholes that were on the geophysical profiles. 
The input data were the X, Y, and Z coordinates 
and the IP and RS values. The output data was the 
silver grade values from logs. Finally, the grade 
distribution from the machine-learning algorithm 
was modeled and compared with the geophysical 
models of the profiles using the Res2Dinv 
software. 

2. Methodology 
2.1. Site Geology 
The Zarshouran gold deposit is located in the 
north-western region of Iran. Figure 1 shows the 
geographical location of this deposit. The gold 
mineralization in the Zarshouran area is similar to 
the disseminated epithermal deposits in 
sedimentary rocks, especially carbonates (Carlin-
type), and can be seen in two different shapes: 

 Very fine-grained particles, which have been 
disseminated in the deposit with high values of 
arsenic and sulfide; 

 Forming an organic gold-carbon complex with 
the organic carbon in the Zarshouran unit, 
showing a high grade of gold. 

Mineralization can be seen as veins in the silicified 
zones in Zarshouran carbonaceous limestone with 
regular veinlets or massive in the middle part of 
Zarshouran. The minerals associated with gold in 
the Zarshouran deposit are orpiment, realgar, 
stibnite, sphalerite, galena, cinnabar, and copper. 
Gang minerals are also quartz, fluorine, barite, and 
calcite. 
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Figure 1. Geographical location of Zarshouran deposit. 

2.2. Data Acquisition and Preparation 
The geophysical surveys (IP/RS) were carried out 
in the Yeganli area in the south-western region of 
the main open-pit of the Zarshouran gold deposit to 
find new deposits in the studied area. Figure 2 
presents the location of the Yeganli area with the 
geophysical profiles on it. Since the mineralization 
trend in this area is north west-south east, the 
profiles are designed perpendicular to this trend. In 

order to cover the Yeganli area, a rectangle with a 
dimension of 1650 m*760 m was considered. All 
profiles were performed in this rectangle. 
Seventeen profiles with a distance of about 100 m 
and the survey point spacing of 30 m on each 
profile were carried out. Figure 3 illustrates the 
name and the number of geophysical profiles. The 
IP/RS array used in this work was pole-dipole with 
222 surveyed points on each profile. 

N 
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Figure 2. Location of the Yeganli area with the geophysical profiles on it. 

Figure 3 shows the coordination of all profiles. 
There are four electrodes in the pole-dipole array. 
The current will be transmitted into the earth via A 
and B electrodes, and the potential differences will 
be received by M and N. M and N, which are close 
to each other, are the potential dipoles, and A and 
B, which are in the physical extreme, are the 
current dipoles.  

 
Figure 3. Coordination of all profiles. 

3. Levenberg-Marquardt Cuckoo Search 
(CSLM) Machine-Learning Algorithm 
Yang and Deb have introduced a metaheuristic 
algorithm based on the cuckoo search in 2010 
(Yang and Deb, 2010). This algorithm simulates 
the parasitic behavior of a kind of bird called 
cuckoo. The cuckoo lays its eggs in other bird’s 
nests. Most of the time, the host bird cannot 
recognize the cuckoo’s eggs from its eggs; 

however, if the parasite egg can be recognized, the 
host bird will throw it away or leave the nest to 
build another one. Some cuckoos are so 
professional that they find a nest with eggs exactly 
similar to theirs. This reduces the probability of 
their eggs being thrown away or the nest being 
abandoned and also increases the probability of 
their chicks staying alive. The CS algorithm 
follows three basic rules. These rules are as follow 
(Nazri et al., 2013): 

 Each cuckoo lays an egg and leaves it 
randomly in a nest. 
 The best nest with the best eggs introduces the 
next generation. 
 The number of host nests is fixed and the 
cuckoo’s egg can be recognized by the host bird with 
the probability of Pa [0.1]. 

If the cuckoo’s egg is detected by the host bird, it 
will be thrown away or the host bird will leave the 
nest. This situation can be approximated by the 
partial probability of Pa from n nests. Reducing this 
probability to zero means a 100% success of the 
cuckoo in saving its eggs and requires the true 
selection of the nests. 
A flow diagram of CSLM is illustrated in Figure 4. 
The cuckoo search is a metaheuristic algorithm 
initiated by an initial random population. In this 
algorithm, the weights are selected by the first part 
of the diagram, and the network is trained by these 
weights through the second part. The strength of 
this algorithm is its capability in reducing errors 
and increasing the accuracy and speed of the 
network compared to other backpropagation 
training algorithms. 
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Figure 4. CSLM algorithm (Nazri et al., 2013). 

Two different sets of data are necessary to prepare 
the network, i.e. input and output. The input data is 
the X, Y, and Z coordinates and the values of IP 
and RS, which can be obtained from the 
geophysical surveys as explained before. The 
output data is the grades of the silver in boreholes 
located on the geophysical profiles. The total 
number of data is 75 data points from the boreholes 
and geophysical surveys. The architecture of the 
network is shown in Figure 5.  
Since the main objective of this work was grade 
estimation, the machine-learning (ML) method 
was selected based on the following reasons 
(Alimoradi, 2008): 

 Machine-learning tools are very powerful in 
pattern recognition. 

 They are suitable in cases with input-output 
data. 

MLs are computational models based on the human 
understanding of the cortical structure of the brain 
and cognition. Algorithmically, MLs are parallel 
adaptive systems; therefore, they require training. 
Back-propagation is a powerful method of 
supervised learning developed after the seminal 
work by Paul Werbos and David E. Rumelhart in 
the 1970s and 80s (Demuth & Beale, 2002).  The 
details of various methods of ML design and 
training are beyond the scope of this paper and are 
explained elsewhere (e.g. see Hagan et al., 1996). 
In this work, we successfully developed and 
implemented a network with three hidden layers of 
14, 12, and 8 nodes, respectively. The network 
architecture is shown in Figure 6.  

 

 

Figure 5. Architecture of neural network. 

Figure 6. Our proposed network with three hidden 
layers. The input layer has five nodes, the next 

three hidden layers (intermediate layers) have 14, 
12, and 8 nodes, respectively. The output layer is a 

single node. 
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4. Results and Discussion 
We checked the CSLM results with 11 different 
traditional algorithms for training the input data in 
multi-layer perceptron artificial neural networks. 
All these algorithms were used in this work to 

determine the best-suited one. The results of each 
algorithm are presented in Table 1 as the average 
of 100 different random iterations for the best-
evaluated structure. 

Table 1. Results for different training algorithms. 
RMStest RMStrain Neurons in each hidden layer Algorithm No 
0.077 0.048 14 12 8 Traincslm 1 
0.092 0.073 14 12 8 Trainlm 2 
0.100 0.090 7 8 9 Traingdx 3 
0.215 0.986 21 22 Trainrp 4 
0.168 0.133 7 8 9 Traincgf 5 
0.117 0.108 10 11 12 Traincgp 6 
0.240 0.096 12 15 Traincgb 7 
0.080 0.078 12 14 16 Trainscg 8 
0.223 0.098 20 21 22 Trainbfg 9 
0.134 0.145 8 10 Trainoss 10 
0.380 0.350 8 8 Traingd 11 
0.173 0.123 12 13 14 Traingdm 12 

 
Columns 4 and 5 in Table 1 are the average values 
of root mean square (RMS) error for the train and 
test data in each training algorithm. According to 
the values of the RMS error, the best-fitted 
algorithm is the Cuckoo Search Levenberg-
Marquardt (TrainCSLM) with the minimum values 
of RMS for the train and test data. The reduction in 
the network error increases the reliability of the 
network predictions. CS, as an optimization engine 
for the BP algorithms, searches for a hybrid model 
to find the best learning parameters. Since the 
results of the machine-learning methods were not 
unique, the best model was run in 20 iterations to 
check the stability of the model. The RMS results 
presented in Table 1 are the average values for 20 
iterations. 
The other training algorithms such as the one-step 
secant and Fletcher-Powell conjugate gradient 
were also used; however, they were discarded due 
to their high tolerance for the test errors and low 
reliability in our application (Demuth & Beale, 
2002; Alimoradi, 2006). With a network of only 
one or two hidden layers, over-training was often 
observed.  Over-training happens when the 
network is highly trained but its predictions appear 
erroneous for the test data. This can be the 
consequence of the complexity of the problem 
investigated here and modeled in our neural 
network. Table 2 illustrates the minimum and 
maximum error values for the Traincslm algorithm. 
The absolute training error Etrain is calculated as 
follows: 

nnn prEprEprE  ,,, 222111   (1) 

and: 

n

E
E

n

i
i

train


 1  
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In Equation 1, r is the real grade value, p is the 
predicted grade value from the network, and n is 
the number of training data. Etest is the same as 
Etrain; however, it is calculated from the test data.  
RMStrain is the mean square error of the training 
data and is obtained from Equation 3: 

n
EEE

RMS n
train

22
2

2
1 




 (3) 

RMStest is calculated as RMStrain for the test data. 

Table 2. Minimum and maximum error values for 
Traincslm algorithm. 

RMStest RMStrain Etest Etrain 
0.077 
0.170 

0.04 
0.0866 

0.0409 
0.0968 

0.0285 
0.0408 

 

As it can be seen in Table 2, RMS of the error in 
training is less than 10%.  For the test results, RMS 
of the error varied between 7% and 17% for the 100 
iterations performed. The reduction in the network 
error increases the reliability of the network 
predictions and requires the availability of 
additional training data. Finally, the parameters of 
the network are shown in Table 3. The results of 
the training are presented in Figure 7. 
In Figure 7, R is the correlation coefficient between 
the real and predicted silver grade values. The 
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correlation coefficient is close to 1.0, implying a 
good network performance. Our data in the 
Zarshouran (Yeganli) site has only silver grade 

values. We used the above-mentioned neural 
network to classify the test data. The results 
obtained are shown in Figure 8. 

Table 3. Parameters of the best network. 
Parameter Value 

Network Backpropagation 
Training algorithm Traincslm 

Number of hidden layers 3 
Input layer neurons 5 

Output layer neurons 1 
First hidden layer neurons 14 

Second hidden layer neurons 12 
Third hidden layer neurons 8 

Trainparam.Goal 0.008 
Trainparam.Epochs 1000 
Trainparam.Show 100 

Learning rate 0.9 
 

  
Figure 7. Correlation coefficient for the train data. Figure 8. Correlation coefficient for the test data. 

During testing, a correlation coefficient greater 
than 0.85 was generally obtained (as exhibited in 
Figure 8). This shows that the silver grade values 
in the test data are practically well-correlated with 
the network predictions; therefore, it deemed 
appropriate to be exceedingly meticulous with the 
reliability of the computational tool that was 
developed as a part of this work to perform the task 
of classification. This is evident in Figure 9, 
remarkably demonstrating the performance of the 
trained network. 
The real values of silver grade shown by plus mark 
in Figure 9 could be easily predicted by the back-
propagation neural network by multiply mark. 
Although there are many points with zero values, 
the network can still predict the higher values 
accurately. 

 
Figure 9. Predicted results for the test data. 
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5. Evaluating Machine-Learning Method 
Compared with Geophysical Models 
Since our dataset was limited to 75 data, many of 
which had data a silver grade of zero, it was 

necessary to validate the ML results with the 
geophysical profiles. To do this, the silver grades 
estimated using ML were modeled for each profile 
(as shown in Figure 10).  

 

 
Figure 10. Silver grade model from ML for profile 1. 

5.1. Profile 1 
This geophysical profile is the northernmost profile 
of the area with a 720 m length. The distance 
between the survey points is 30 m, and the depth of 
the investigation is about 230 m. The Res2Dinv 
software was used to make the inversion on the 
surveyed geophysical data in this profile. Figure 11 
shows the inverted model of profile 1. The upper 
part illustrates the model of chargeability, and the 
lower part is the resistivity model. 
Generally, there are two potential zones in this 
section according to the chargeability profile (two 
zones with high chargeability values as red zones). 
According to the geological pieces of evidence, the 
geophysicists of the project assumed the right part 
of this section as the priority of the next exploration 

activities and introduced a borehole to this part 
(BH-1 in the chargeability section). The position of 
the introduced BH-1 is specified by the red arrow 
in the ML section (Figure 10). The exact position 
of the anomalous zone is in the right hand of this 
arrow. ML could predict both potential zones 
accurately with a difference of 50 m to the center 
of the right-hand anomaly. This difference can be 
due to the lack of enough test data (core analysis) 
in this part of the section to correlate them with the 
predicted values by ML. The depth of both 
anomalies is about 100 m, and the distance between 
the anomalous zones is also about 200 m, which 
can be estimated and modeled accurately by the 
ML method. 
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Figure 11. Inverted values of geophysical data using the Res2DInv software for profile 1.  

5.2. Profile 4 
The length of this profile is 720 m with a 30-m 
distance between the survey points, and the depth 
of the investigation is about 190. Figures 13 and 14 

illustrate the inverted geophysical sections of 
chargeability and resistivity and the estimated 
silver grade section using the new machine-
learning tool.  

 

Profile 1 
Model IP with topography 
Iteration 5 RMS error=13.5 
 

Unit Electrode Spacing=30.0 m 

Model resistivity with topography 
Iteration 5 RMS error=106.1 
 

Profile 1 

Unit Electrode Spacing=30.0 m 
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Figure 12. Inverted values of the geophysical data using Res2DInv software for profile 4.  

 
Figure 13. Silver grade model from ANN and surfer for profile 4. 

Unit Electrode Spacing=30.0 m 

Unit Electrode Spacing=30.0 m 

Model resistivity with topography 
Iteration 5 RMS error=81.8 
 

Model IP with topography 
Iteration 5 RMS error=8.1 
 

Profile 4 

Profile 4 
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It can be concluded from the geophysical sections 
(Figure 12) that there is a major anomaly in the 
right-hand part of the profile. This anomaly is 
about 120 m far from the end of the profile and has 
a depth of 50 m. Figure 13 shows that ML is able 
to predict the horizontal location of the anomaly 
very accurately; however, the predicted depth is 
about 25 m deeper than the actual depth. This also 
can be due to the lower resolution of ML according 
to the quality and lack of the core analysis data. 

5.3. Profile 9 
The length of this profile is 720 m with a 30-m 
distance between the survey points, and the depth 
of the investigation is about 190. Figures 15 and 16 
illustrate inverted the geophysical sections of 

chargeability and resistivity and the estimated 
silver grade section using machine-learning. Figure 
14 shows that the main anomaly of this section is 
located in the middle part of the profile with a depth 
of about 150 m. Borehole 3 was proposed in the 
middle of the anomaly according to the Res2Dinv 
model. Although ML has predicted the location of 
the maximum grade (more than 13.5 ppm) 
correctly, according to Figure 15, the shape of the 
anomaly is extended into the end of the profile. The 
chargeability section also shows the extension of 
the anomaly to the end of the profile by increasing 
the depth. Moreover, the resistivity section 
confirms the existence of the anomaly in the right-
hand part of the section according to the lower 
values of the resistivity in this part.  

 

 
Figure 14. Inverted values of the geophysical data using the Res2DInv software for profile 9.  

Unit Electrode Spacing=30.0 m 

Unit Electrode Spacing=30.0 m 

Model IP with topography 
Iteration 5 RMS error=7.0 

Model resistivity with topography 
Iteration 5 RMS error=73.3 

Profile D Profile 9 

Profile 9 
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Figure 15. Silver grade model from ANN and surfer for profile 9. 

6. Conclusions 
The measurement noise and the non-linear 
relationship between the geophysical attributes and 
ore grade quantities exert difficulties in performing 
geophysical interpretation reliably. The IP/RS 
method, as a geophysical-based nondestructive 
method, is common in problems of predicting 
potential zones in sulfide ores. Consequently, other 
viable methods of prediction such as the one 
proposed in this paper may be deemed necessary in 
real cases. We successfully implemented and tested 
an artificially intelligent computational agent (a 
new cuckoo search-based machine-learning tool) 
to consider the unknown non-linear relationships 
between the system variables in our prediction 
problem (foreseeing the ore grade).  Our approach 
uses the X, Y, and Z coordinates and the IP and RS 
values as the input system variables.  The network 
seeks the relationship between these input 
variables adaptively and strives to a desirable 
output, which is, in our case, the real ore grade 
values obtained from the direct sampling and 
analyzing after borehole drilling.  
We considered a real site to test our methodology. 
The Yeganli area in the Zarshouran gold mine case 
showed that the network could train itself very well 
with the practically complete correlation between 
the real ore grade values and the predicted ones (a 

correlation coefficient R close to one).  As a 
double-check, we compared the results of the 
machine-learning technique with the numerical 
modeling of the geophysical data performed by 
Res2DInv. The Res2DInv numerical inversion 
illustrates the best location for further drillings as 
the targets of mineral deposits. The network also 
exhibited a remarkable capability in estimating the 
unknown zones by comparing the results of ML 
prediction with the numerical models in three 
geophysical profiles. The results obtained showed 
that the network did predict these profiles reliably. 
There were some disparities in some places 
between the results of ML and Res2DInv 
numerical models.  We speculate the followings as 
the possible reasons for this peculiarity: 

 The locations of the drilled holes were not 
exactly on the geophysical profiles. 

 The data scattering of the outputs was limited, 
and there was a specific skewness in data. 

 The number of training data (80% of 75 data 
points) is not sufficient for the network to 
consider all the different possibilities of various 
conditions.  

 The nature of the machine-learning tools is soft 
computing, and numerical methods are hard. 
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 Earth heterogeneity leads us to use the soft 
computing tools to recognize the hidden pattern 
better.  

The remedy would be obtaining more drilling 
samples from the profiles and finding the real ore 
grade values, then augmenting the training of the 
neural network with the new data and ore grade 
values. It is also recommended to use the output 
data with a suitable distribution of all ranges (if 
possible) in other cases, specifically in 
disseminated sulfide deposits, in which it has been 
proven that there is a proper relationship between 
IP/RS and the mineral grade values. We speculate 
this would enhance the accuracy of the network 
predictions considerably. 

Acknowledgments 
The many constructive comments and pieces of 
advice received during this work from Mr. 
Mohammad Ebrahim Sabaei, working at the 
Zarshouran gold mines and Mineral Industries 
Development Company, are appreciated. 
Furthermore, we sincerely appreciate the 
comments received from and the enlightening 
discussions with our anonymous reviewers that 
improved the paper. 

References 
[1]. Alimoradi, A. (2006). A comparison between RMR 
values of TSP-203 and the real values. MSc. Thesis in 
Mine Exploration Engineering (Third Chapter), 
Shahrood University of Technology, 45-64. 

[2]. Alimoradi, A., Moradzadeh, A., Naderi, R., Zad 
Salehi, M. and Etemadi, A. (2008). Prediction of 
geological hazardous zones in front of a tunnel face 
using TSP-203 and artificial neural networks, 
Tunnelling and Underground Space Technology, 23, 
711-717. 

[3]. Alimoradi, A., Angorani, S., Ebrahimzadeh, M. and 
Shariat Panahi, M. (2011).  Magnetic inverse modelling 
of a dike using the artificial neural network approach, 
Near Surface Geophysics, 9, 339-347. 

[4]. Bishop, C.M. (1995). Neural networks for pattern 
recognition, 1st edition, Oxford Clarendon. 

[5]. Brown, W.M., Gedeon, T.D., Groves, D.I. and 
Barnes, R.G. (2000). Artificial neural networks: A new 
method for mineral prospectivity mapping, Auatrailian 
Journal of Earth Science, 47, 757-770. 

[6]. Brown, W.M., Gedeon, T.D. and Groves, D.I. 
(2003). Use of noise to augment training data: A neural 
network method of mineral potential mapping in regions 
of limited known deposit examples, Journal of Natural 
Resource Research, 12, 141-152. 

[7]. Calderón-Macías, C., Sen, M.K. and Stoffa, P.L. 
(2001). Artificial neural networks for parameter 
estimation in geophysics, Geophysical Prospecting, 48, 
21–47. 

[8]. Demuth, H., Beale, M. (2002). Neural network 
toolbox for use with MATLAB, Version 3.0. 

[9]. Douglas, W., Oldenburg, Yaoguo, Li. (1999). 
Estimating depth of investigation in dc resistivity and IP 
surveys, Geophysics, 64, 403-416. 

[10]. El-Qady, G., Ushijima, K. (2001). Inversion of DC 
resistivity data using neural networks, Geophysical 
Prospecting, 49, 417-430. 

[11]. Hagan, M.T., Demuth, H.B. and Beale, M. (1996). 
Neural network design, PWS Publishing Company, 
Boston, MA. 

[12]. Hasani Pak, A., Shoja-at, B. (2000). Metal-
nonmetal ore modeling and their exploration 
application, University of Tehran. 

[13]. Hosseinali, F. and Alesheikh, A.A. (2008). 
Weighting spatial information in GIS for copper mining 
exploration, Journal of Applied Science, 5, 1187-1198. 

[14]. Loke, M. H. (1999). Electrical imaging surveys for 
environmental and engineering studies: A practical 
guide to 2-D and 3-D surveys, 1-4. 

[15]. Nazri, M.N., Abdullah Khan, M.Z.R. (2013). A 
new Levenberg Marquardt based back propagation 
algorithm trained with Cuckoo search, Procedia 
Technology, 11, 18-23. 

[16]. Porwal, A. (2006). Mineral potential mapping with 
mathematical geological models, PhD thesis, University 
of Utrecht. 

[17]. Poulton, M., El-Fouly, A. (1991). Preprocessing 
GPR signatures for cascading neural network 
classification, 61st SEG meeting, Houston, USA, 
Expanded Abstracts 507–509. 

[18]. Poulton, M., Sternberg, K., and Glass, C. (1992). 
Neural network pattern recognition of subsurface EM 
images, Journal of Applied Geophysics, 29, 21–36. 

[19]. Sanchez, J.P., Chica-Olmo, M., and Abarca-
Hernandez, F. (2003). Artificial neural network as a tool 
for mineral potential mapping with GIS, Journal of 
Remote Sensing, 24, 1151-1156. 

[20]. Selley, R.C., Cocks, R.M. and Plimer, I.R. (2005). 
Encyclopedia of geology, Vol. 1, 1st edition, Elsevier 
Ltd, Oxford. 

[21]. Skabar, A.A. (2005). Mapping mineralization 
probabilities using multilayer perceptrons, Journal of 
Natural Resource Research, 14, 109-123. 

[22]. Singer, D.A. and Kouda, R.A. (1997). 
Classification of mineral deposit into types using 
mineralogy with a probabilistic neural network, 
Nonrenewable Resources, 6, 27-32. 



Alimoradi et al./ Journal of Mining & Environment, Vol. 11, No. 3, 2020 

878 

[23]. Singer, D.A. and Kouda, R.A. (1999). Comparison 
of the weights-of-evidence method and probabilistic 
neural networks, Natural Resources Research, 8, 287-
298. 

[24]. Singh, U.K., Tiwari, R.K. and Singh, S.B. (2005). 
One-dimensional inversion of geoelectrical resistivity 
sounding data using artificial neural networks – a case 
study, Computational Geoscience, 31, 99– 108. 

[25]. Spichak, V.V., Popova, I.V. (2000). Artificial 
neural network inversion of MT – data in terms of 3D 

earth macro – parameters, Geophysical Journal 
International, 42, 15–26. 

[26]. Yang, X.S. and Deb, S. (2010). Engineering 
optimization by Cuckoo Search, International Journal of 
Mathematical Modelling and Numerical, 1, 330-343. 

[30]. Yuval, Douglas, W., Oldenburg. (1995). DC 
resistivity and IP methods in acid mine drainage 
problems: results from the Copper Cliff mine tailings 
impoundments, Journal of Applied Geophysics, 34, 
187-198. 



 1399، شماره سوم، سال زیستپژوهشی معدن و محیط -و همکاران/ نشریه علمی علی مرادي

 

  

به منظور تخمین مقادیر  Cuckooلگوریتم یادگیري ماشین جستجوي تلفیق نشانگرهاي ژئوفیزیکی با کمک ا
  : معدن طلاي زرشورانيمطالعه مورد –عیار نقره 

  

  3و سعید عباسی 2، مریم صحاف زاده1، احمد کریمی1، بیژن ملکی*1اندیشه علی مرادي

  گروه مهندسی معدن، دانشگاه بین المللی امام خمینی، قزوین، ایران -1
  ماینینگ پلاس، ونکوور، کانادامشاور معدنی، شرکت  -2

  ، تکاب، ایرانشرکت گسترش معادن و صنایع معدنی زرشوران -3

  26/08/2020پذیرش  ،01/08/2020ارسال 

 alimoradi@eng.ikiu.ac.ir * نویسنده مسئول مکاتبات:

  

  چکیده:

هاي کم هزینه تر و مقرون به هاي غیر مستقیم ژئوفیزیکی جزء روششوند.از بین آنها، روشغیر مستقیم تقسیم میي مستقیم و هاي اکتشافی به دو دستهروش
. روش پلاریزاسیون استهاي ژئوفیزیکی، به دست آوردن یک تصویر صحیح از زیر زمین . هدف بررسیهاي مستقیم هستندتر از لحاظ زمانی در قیاس با روشصرفه

ي معدنی زرشوران به صورت پارکنده در سنگ بستر هاي فلزي در محدودهیدي فلزي است. از آنجایی که کانههاي سولفروش مرسوم در تشخیص کانهالقایی، یک 
پلاریزاسیون القایی، هاي به موازات برداشتقرار دارند، لذا روش پلاریزاسیون القایی به عنوان روش اصلی اکتشافات ژئوفیزیک در این محدوده مورد نظر قرار گرفت. 

هاي ژئوفیزیک مقاومت مخصوص در این تحقیق سعی بر تلفیق داده هاي مقاومت مخصوص الکتریکی نیز به منظور ایجاد تفسیري دقیقتر صورت گرفت.داشت دادهبر
و به منظور تخمین  Cuckooها و اطلاعات زمین شناسی به کمک الگوریتم یادگیري ماشین جستجوي ایی به همراه مقادیر عیاري گمانهالکتریکی و پلاریزاسیون الق

است. این امر کمک به کاهش هاي حفاري ، علی الخصوص در مناطق فاقد دادهمقادیر عیار نقره شده است. نتایج نشانگر قابلیت بالاي روش در تخمین مقادیر عیار
وان روش اصلی در سازي عددي، به عنمصنوعی و روش مدلسازي معکوس هوش ها و زمان عملیات اکتشاف و تخمین ذخیره خواهد کرد. مقایسه نتایج مدلهزینه

 وش مصنوعی با مدل عددي بوده است.هاي ژئوفیزیک، نشانگر انطباق بسیار خوب نتایج روش همعکوس سازي داده

  هاي عددي.، یادگیري ماشین، ذخیره زرشوران، روشCuckooنشانگرهاي ژئوفیزیک، جستجوي  کلمات کلیدي:
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