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 This work presents a quantitative predicting likely acid mine drainage (AMD) 
generation process throughout tailing particles resulting from the Sarcheshmeh copper 
mine in the south of Iran. Indeed, four predictive relationships for the remaining pyrite 
fraction, remaining chalcopyrite fraction, sulfate concentration, and pH have been 
suggested by applying the gene expression programming (GEP) algorithms. For this, 
after gathering an appropriate database, some of the most significant parameters such 
as the tailing particle depths, initial remaining pyrite and chalcopyrite fractions, and 
concentrations of bicarbonate, nitrite, nitrate, and chloride are considered as the input 
data. Then 30% of the data is chosen as the training data randomly, while the validation 
data is included in 70% of the dataset. Subsequently, the relationships are proposed 
using GEP. The high values of correlation coefficients (0.92, 0.91, 0.86, and 0.89) as 
well as the low values of RMS errors (0.140, 0.014, 150.301, and 0.543) for the 
remaining pyrite fraction, remaining chalcopyrite fraction, sulfate concentration, and 
pH prove that these relationships can be successfully validated. The results obtained 
also reveal that GEP can be applied as a new-fangled method in order to predict the 
AMD generation process.  
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1. Introduction 
Tailings and wastes, which result from the 

mining activities, are the most abundant volumes 
of solid materials worldwide. Some of the most 
significant environmental problems caused by 
these wastes and tailings at the global scale include 
the generation of acid mine drainage (AMD) and 
the pollutions resulting from the high concentration 
of dissolved metals in underground and surface 
water bodies. AMD is generated where the sulfidic 
minerals in mining sites are exposed to water and 
atmospheric oxygen. The AMD generation would 
be considered as a concern wherever the sulfate 
minerals (mainly pyrite, chalcopyrite) exist and the 
pH has low values [1].  

Several critical factors affect the pyrite and 
chalcopyrite oxidation processes, as follow: the 
presence of oxygen, ferric iron, temperature, 
presence/absence of microorganisms, Eh, and pH. 
Indeed, the mentioned parameters play essential 

roles in opting further reclamation and treatment 
strategies or even in selecting the mineral 
processing methods, motivating the researchers 
toward performing a vast array of studies on 
relevant topics during these recent decades [2-5]. 
Reaction (1) expresses the most crucial pyrite 
oxidation reaction in the presence of oxygen, which 
leads to the formation of AMD: 

FeSଶ +
7
2 Oଶ + HଶO → Feଶା + 2Soସଶି + 2Hା (1) 

As it can be seen, the products of this oxidation 
reaction are ferrous iron, sulfate, and acid, which 
would be considered as the output parameters 
including the remaining pyrite fraction, sulfate, and 
pH in this research work. Moreover, a complete 
oxidation of chalcopyrite (CuFeS2), which leads to 
the generation of AMD, is presented as follows 
(reaction 2) [6]: 
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CuFeSଶ + 4Oଶ → 2Cuଶା + Feଶା + SOସ
ଶି (2) 

As it can be seen in reaction (2), the complete 
oxidation of chalcopyrite ends up producing no 
acid product. Nevertheless, a combination of the 
oxidation process of the ferrous iron and iron 
hydroxyl is known to regenerate the acid (reaction 
(3)). 

2CuFeSଶ +
17
2

Oଶ + 5HଶO → 

2Cuଶା + 2Fe(OH)ଷ + 2SOସ
ଶି + 4Hା 

(3) 

Rimsdith et al. (1994) have found that 
chalcopyrite oxidation accelerates with rising the 
ferric iron concentration. The increase is, however, 
lower than that for the pyrite by 1 to 2 folds [6]. 

Fergusen and Erickson (1988) have described 
that the factors controlling the AMD formation are 
generally characterized in three affectors: (a) 
primary, (b) secondary, and (c) tertiary. The 
parametrs involved in acid production are 
considered as the primary parameters [7]. The 
second fectors are those responsibile for controling 
the consumption of the products triggering the acid 
reactions. The third factors are related to the 
physical characteristics of the waste particles that 
can directly affect acid production, transportation, 
and consumption. Indeed, these three different 
factors have major roles in the AMD reactions and 
the quality of proceeding water from the waste 
particles.  

During the past 50 years, many research works 
have targeted the environmental issues of sulfide 
mineral oxidation and associated AMD or what is 
generally referred to as acid rock drainage (ARD) 
alongside the processes through which the metals 
and those minerals are dissolved or precipitated. 
Accordingly, the researchers have long tried to use 
the experimental methods (e.g. static and kinetic 
tests) along with the numerical, stochastic, and 
even intelligent methods to estimate the parameters 
affecting the AMD generation. For instance, Rooki 
et al. (2011) have managed to predict the heavy 
metals of copper, iron, magnesium, and zinc in 
AMD using the back-propagation neural networks 
(BPNN), general regression neural networks 
(GRNN), and multiple linear regressioin (MLR). 
The results obtained proved that BPNN and GRNN 
could serve as appropriate techniques for a quick 
and cost-effective estimation of the heavy metals 
resulting from AMD [8]. Aryafar et al. (2012) have 
predicted the concentrations of heavy metals 
triggered by AMD by applying the support vector 
machine (SVM) techniques. They further 

compared the results obtained with those of 
GRNN. The results showed a higher accuracy and 
a faster pace of SVM, as compared with GRNN in 
this case [9]. Doulati Ardejani et al. (2012) have 
used GRNN to predict the concentrations of REEs 
resulting from neutral alkaline mine drainage 
(NAMD) at the Razi coal mine in the north of Iran. 
The NAMD case was characterized by low 
concentrations of REEs, high concentrations of 
sulfate, and bicarbonate, while the pH value was 
almost 9. In order to verify the GRNN technique, 
its results were compared with those of MLR, 
which showed that GRNN could be more reliable 
than MLR [10]. Sadeghimirshahidi et al. (2013) 
have applied ANN to estimate the pyrite fractions 
within a coal pile. For this purpose, they considered 
different input parameters including the depth of 
the pile, initial pyrite fraction, diffused oxygen 
fraction throughout the wastes, and annual 
precipitation data [11]. Bouzahzah et al. (2014) 
have compared the static test with different 
mineralogical contents to evaluate the significance 
of mineralogical studies in AMD prediction. A 
modified kinetic test was compared with the 
standard kinetic test protocol in this research work 
[12]. Jodeiri Shokri et al. (2014a) used an adaptive 
neuro-fuzzy inference system (ANFIS) method to 
evaluate the pyrite contents within an abandoned 
coal waste pile. They found that their hybrid 
method, ANFIS, had better results than the ANN 
results [13]. In another research work on the same 
case, Jodeiri Shokri et al. (2014b) have presented a 
statistical relationship for estimating the pyrite 
contents. In 2016, Bahrami and Doulati Ardejani 
estimated the oxidation of the pyrite process using 
an ANN-simulated annealing (SA) hybrid method. 
They concluded that the results obtained from SA 
provided a better estimation than either ANN or the 
statistical method [15]. Dold (2017) has reviewed 
all the predicting techniques in AMD prediction. 
His critical review highlighted the ARD prediction 
based on the involvement of geochemical 
processes [16]. Balci and Demirel (2018) have used 
acid base accounting (ABA), aqueous leaching, 
and net acid generation (NAG) tests and 
mineralogical studies in order to predict AMD 
resulting from the largest historical copper deposits 
of Turkey [17]. Hadadi et al. (2020) have applied a 
probabilistic approach to predict how acid mine 
drainage is generated within coal waste particles. 
After building a dataset with historical data of an 
abandoned pile, they considered some parameters 
such as the depth of the waste, concentration of 
bicarbonate, and oxygen fraction as the input data, 
while the remaining pyrite fraction was the output 
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data. Then the best distribution functions were 
determined using the Monte Carlo simulation. 
Subsequently, the best probability distribution 
functions of the input parameters were inserted into 
the linear statistical relationships to find the 
probability distribution function of the output data 
[18].  

Nevertheless, many treatment techniques have 
been developed for reducing and neutralizing the 
AMD issues during these years. For instance, 
Sebogodi et al. (2019) have used green liquor dregs 
from two Kraft pulp manufactures in South Africa 
[19]. In another research work, a pilot-scale of the 
operational conditions of the actual AMD 
nanofiltration (NF) was used by Luis et al. (2020). 
Indeed, this method was applied to recover water 
that could be used as a tool for  copper recovery 
[20]. Zhou et al. (2020) have proposed an index 
system of surface mining based on safety, high 
efficiency, and environmental influence [21]. Chen 
et al. (2020) have suggested another evaluation 
index for green mine construction based on Driver–
Pressure–State–Impact–Response (DPSIR) [22]. 

Along with these artificial intelligence (AI) 
techniques, gene expression programming (GEP) 
has intensively been applied in different scopes of 
mining engineering. For instance, Behnia and 
Shariar (2015) have used GEP to predict the tunnel-
induced settlement [23]. In 2015, Johari and 
Hoshmand Nejad applied GEP to predict the soil-
water characteristic curve [24]. Shirani Faradonbeh 
et al. (2018) have estimated an environmental issue 
resulting from blasting using GEP and GP. For this 
purpose, they collected 92 blasting events, and 
subsequently, they measured air overpressure 
(AOp). The results obtained revealed that GEP had 
a precise estimation than the other models [25]. 
Thneibat and Tarawneh (2019) have applied GEP 
to select the appropriate ground improvement 
technique by increasing the soil bearing capacity, 
reducing potential settlement, and mitigating 
liquefaction [26]. Hajihassani et al. (2019) have 
presented an equation by the GEP algorithm to 
predict the convergence of tunnels [27]. 

It should be noted that the mathematical 
relationships governing the pyrite and chalcopyrite 
oxidation processes and their subsequent products 
are too complicated and their solutions are time- 
and cost-consuming. Indeed, the primary 
motivation leading various researchers toward 
using the statistical and intelligent methods has 
been to formulate simple yet high-accuracy 
mathematical equations. The literature review also 
revealed that some of the applied intelligent 
algorithms had better results than the conventional 

methods. Also the literature review showed that the 
GEP algorithm was not applied in predicting the 
AMD formation. For this purpose, the present 
research work is an attempt to apply the GEP 
algorithm to suggest relationships to predict the 
remaining pyrite fraction and chalcopyrite faction 
through the tailings at the Sarcheshmeh copper 
mine in the south of Iran. 

1.2. Site Description 

The Sarcheshmeh copper mine is situated 50 km 
to the south of Rafsanjan in the central part of 
Zagros Mountain Range. It supplies one of the 
largest mining complexes in the Middle East. The 
geological reserve of the mine has been estimated 
to exceed 1.2 billion tons of sulfuric copper ore 
with an average grade of 0.7%. In terms of geology, 
the Sarcheshmeh copper mine was formed on the 
global copper belt, covering a large 1200 × 2300 m 
ellipsoidal area from the SE to the NW with an 
average ore depth of 1612 m.  

The mine is located in a region that is categorized 
as a cold desert climate. The average precipitation 
in the area is around 550 mm per year. The 
temperature varies from -15° in the winter to +32° 
in the summer. The dumps are covered by snow for 
three to four months per year. Based on the field 
observations and previous research works, mineral 
processing operations result in the production of 
more than 24 megatons of tailing over an area of 
more than 4 km2 within the studied area. In some 
cases, the dump height reaches 12 m [28]. 

2. Materials and Methods 
2.1. An overview of GEP algorithm 

GEP is based on the evolutionary computations 
inspired by the natural evolution phenomena. This 
method was coined by Ferreira in 1999 and 
officially released in 2001 [29]. GEP integrated the 
ideas of the two preceding legacy algorithms 
including GA and GP in an attempt to cover their 
shortcomings. In this methodology, the genotype of 
the chromosomes possesses a linear structure, 
similar to the case with GA. On the other hand, the 
phenotype of the chromosomes exhibits a tree 
structure with variable length and size, similar to 
the case with genetic programming (GP). Karva 
code is the language of choice for GEP, and 
multiple genes are used to capture the multiple 
structures of chromosomes and the ability to 
generate subtrees, providing the algorithm with a 
better compatibility and performance [30]. 
According to the flowchart of GEP (Figure 1), the 
beginning of the algorithm is random with the 
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generation of an initial population. The generated 
chromosomes are then expressed followed by 
evaluating each individual based on an evaluation 
function with a selection process then performed 
based on the evaluation results. Applying particular 
modifications to the selected individuals, a new 
population of the selected individuals with new 
characteristics is generated. The new population 
will then repeat the mentioned procedure, and this 
process continues until an appropriate solution is 
achieved (Figure 1) [28].  

 
Figure 1. Flowcharts of GEP. 

2.2. Open reading frames and genes 
The open reading frames (ORFs) can help to 

better understand GEP. From the biological 
viewpoint, a coding gene sequence begins with the 
“start”codon. Then it continues with the amino acid 
codons, and the termination codon is the ending 

point [29]. It should be noted that the start point is 
generally considered the first position of a gene, 
while the termination point may not always be with 
the last position of a gene. The non-coding region 
downstream from the termination point is usual in 
genes. An algebraic example is given for a better 
underestanding of the expression (Equation 4) [29]: 

√(ܽ + ܾ) × (ܿ − ݀) (4) 

which can also be represented as a diagram or 
ET, as follows (Figure 2) [29]: 

 
Figure 2. An ET example. 

The square root function is presented by “Q”. 
This kind of diagram representation is in fact the 
phenotype of GEP individuals, being the genotype 
easily inferred from the phenotype as follows: 

The ET reads from left to right and from top to 
bottom. 

2.3. Gene expression programming genes 
Head and tail are the main parts of the GEP 

genes. Although the head is composed of the 
function set F and the terminal set T, the tail has 
only terminals. As a result, there are two different 
alphabets at various regions within a  gene. The 
length of each head is selected whereas the length 
of tail t is defined by a function of h (Equation 5) 
[29]: 

ݐ = ℎ(݊௫ − 1) + 1 (5) 

In this equation, n is the number of arguments of 
the function. 

Suppose that you have a gene as {Q, *, /, -, +, a, 
b}. In this case, n is 2. For instance, for h = 10 and 
t = 11, the length of the gene would be h+t, i.e. 21. 
Figure 3 shows this gene (the bold is tail in the 
figure), and as a consequence, ET will be coded as 
follows [29]: 
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Figure 3. An ET example for describing head and 

tail 

2.4. Fitness Function 
The first step of the GEP algorithm is the choice 

of a fitness function. In this work, Equation (6) was 
considered as the fitness function. 

RMSE = ඩ
1
n (P୧ − O୧)ଶ

୬

୧ୀଵ

 (6) 

where: 
n: number of data points; 

Pi : estimated data;  

Oi : real data. 

3. Results and Discussions 
3.1. Dataset 

As mentioned earlier, the AMD generation was 
predicted by applying the gene expression 
programming algorithm. For this purpose, all the 
experimental data was collected from the tailing 
dumps in the previous studies such as Jannesar 
Malakooti et al. (2014), which was gathered to 
build a database. A brief database is presented in 
Table 1. Then the input and output data was 
selected according to the available data. The depth 
of the tailings within the dump, fraction of diffused 
oxygen through the waste particles, concentrations 
of bicarbonate, chloride, nitrite, and nitrate, initial 
pyrite, and chalcopyrite fractions within the dump 
were considered the as input data. Moreover, the 
remaining pyrite fraction, the remaining 
chalcopyrite fraction, and pH values were selected 
as the output data. Then the GEP algorithm was 
used to find the best relationships between each 
output and all the inputs. The range of the input and 
output parameters is listed in Table 2. The dataset 
was divided into two parts: training dataset and 
validation dataset being made up of 70% and 30% 
of the database, respectively. The validation dataset 
was chosen randomly.  

Table 1. Database of Sarcheshmeh copper tailings dump [28] 

No. 
Depth of 
tailings 

(m) 

Bicarbonate 
(mg/L) 

Chloride 
(mg/L) 

Nitrite 
(mg/L) 

Nitrate 
(mg/L) 

Remaining 
pyrite fraction 

(%) 

Remaining 
chalcopyrite 
fraction (%) 

Sulfate 
(mg/L) 

pH 
value 

1 0.3 0 42.4 19.8 4.3 1.403 0.06 844 2.9 
2 0.6 0 40.7 11 3.2 1.442 0.086 1150 3.1 
3 0.9 0 34.1 12.2 1.8 1.549 0.112 1300 4.5 
4 1.2 0 30.7 10.2 3.1 1.606 0.129 928 4.7 
5 1.5 20 19 14.9 3.9 1.715 0.133 901 5.6 
6 1.8 25 22.4 16.9 4.3 1.830 0.134 870 6.7 
7 2.1 30 19 14.3 5.2 1.920 0.134 863 7 
8 2.4 25 17.1 14.7 5.5 1.930 0.135 808 7.8 
9 2.7 30 17.2 20.3 7.2 1.930 0.135 850 7.3 

10 3 22 15.5 10.6 7.6 1.950 0.13 835 7.6 
11 3.3 28 15.5 6.9 6.5 1.945 0.136 800 7.8 
12 3.6 26 12.1 6.7 6.3 1.936 0.131 915 8.2 
13 3.9 25 13.8 6.3 5.9 1.927 0.137 905 7.9 
… … … … … … … … … … 
57 0.3 52.5 80.82 0.075 7.13 1.629 0.049 321.9 4.2 
58 0.6 0 78.72 0.15 0 1.762 0.069 589.5 3.8 
59 0.9 0 78.78 0.075 0 1.841 0.085 837 3 
60 1.2 42 73.99 0.075 0 2.013 0.12 622.5 6.2 
61 1.5 52.5 67.82 0.075 0 2.163 0.14 444.7 7.4 
62 1.8 42 28.61 0.075 0 2.343 0.163 351.4 8.1 
63 2.1 42 25.76 0.05 0 2.483 0.177 365.2 8.6 
64 2.4 47.2 22.61 0.075 0 2.663 0.185 309.2 8.4 
65 2.7 42 18.09 0.075 0 2.708 0.186 337.2 8.4 
66 3 52.5 18.09 0.15 0 2.727 0.192 351.4 8.3 
67 3.3 47.2 18.09 0.075 0 2.78 0.2 358.9 8.3 
68 3.6 46.2 18.09 0.075 0 2.858 0.204 366.8 7.9 
69 3.9 52.5 18.09 0.075 0 2.893 0.208 314 8.1 
70 4.2 52.5 22.61 0.1 0 2.914 0.208 371.6 8 
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Table 2. Range of the datasets used for GEP. 
Parameter Symbol Change interval Type of parameter 

Depth of tailings (m) D 0.3-4.200 

 
 
 

Input 
 

Bicarbonate concentration (mg/L) Bi 0-52.500 
Choloride concentration (mg/L) CL 12.100-82.210 

Nitrite (mg/L) N 0-21.700 
Nitrate (mg/L) NN 0-22.630 

Initial remaining pyrite fraction (%) IPy 1.950-3.159 
Initial remaining chalcopyrite fraction 

(%) IChPy 0.137-0.261 

Remaining pyrite fraction (%) Py 1.403-3.159  
Output 

 
 

Remaining chalcopyrite fraction (%) ChPy 0.0094-0.261 
Sulfate (mg/L) S 309.200-1960.900 

pH pH 2.900-8.600 
 

3.2. GEP results 
In the present work, GEP was implemented in the 

GeneXproTools 5.0 in order to obtain a final 
relationship between the input and output 
parameters. For this, after determining the fitness 
function, the next step is to select a set of functions 
for forming the chromosomes. According to Table 
3, the most appropriate function for obtaining the 

final equation for each output parameter was 
determined. 

In the next stage, the chromosome structure, 
linking function, and coefficients of the genetic 
operators were selected. Table 4 reports the 
parameters used in GEP. 

Figures 4 to 7 demonstrate the final equations for 
using the GEP algorithm in order to estimate the 
output parameters in the form of expression trees. 

Table 3. Functions utilized in this work. 
Parameter Functions 

Py +, -, ×, ÷, exp(x), ln(x), 1/x, x2, x3, √xయ , tanh(x), (1-x) 

Chpy +, -, ×, ÷, sqrt(x), exp(x), ln(x), 1/x, x2, x3, √xయ , tanh(x), (1-x) 
S +, -, ×, ÷, sqrt(x), exp(x), ln(x), 1/x, x2, x3, √xయ  

pH +, -, ×, ÷, exp(x), ln(x), 1/x, x2, x3, √xయ , tanh(x), (1-x) 

Table 4. Parameters of GEP. 

Parameter Value 
Py Chpy S pH 

Number of chromosomes 34 35 37 33 
Head size 7 7 7 7 
Tail size 8 8 8 8 

Gene size 15 15 15 15 
Number of genes 4 4 4 4 
Linking function Multiplication Multiplication Multiplication Multiplication 
Fitness function RMSE RMSE RMSE RMSE 
Mutation rate 0.008 0.07 0.01 0.06 

Training 70 % 70 % 70 % 70 % 
Validation 30 % 30 % 30 % 30 % 

Number of generations 3000 3000 3000 3000 
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Figure 4. Expression tree for predicting the remaining pyrite fraction. 

 

 

 
Figure 5. Expression tree for predicting the remaining chalcopyrite fraction. 
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Figure 6. Expression tree for predicting the sulfate 

content. 
Figure 7. Expression tree for predicting the pH 

values. 

Equations (7)-(10) show the suggested 
relationships developed using the GEP algorithm 
for predicting the remaining pyrite fraction, 
remaining chalcopyrite fraction, sulfate content, 
and pH, respectively. 

For validation of the suggested relationships of 
GEP, the results obtained were compared using the 
coefficient of determination (R2) and root-mean-

square error (RMSE) in order to find the best model 
for each one of the output parameters (Table 5). 
Figures 8-11 show the validation diagrams for 
different output parameters. Figure 10 
demonstrates the identified relationships between 
the measured data and the predicted data for the 
output parameters. 

 
 



Jodeiri Shokri et al Journal of Mining & Environment, Vol. 11, No. 4, 2020 
 

1135 

Py = ቀ൫(−9.86449 − CL) − (N × 6.25204)൯ − ൫(D × 5.95461) ÷ (NN + IPy)൯ቁ                         

× ൬1− ቀ൫N − (IPy × 4.15766)൯ + (IPy −N)ቁ൰                                    

× ቆexpቆ൬
IPy
CL

൰
ଶ

−
60.66362

CLଶ
ቇቇ × ቆ

ඥ1− IPyయ

(CL− 1.60375) × (N + 7.85827)ቇ 

(7) 

ChPy = 3.00332 × ൬exp ൬
1

−0.54748 × CL
൰൰

ହ

× ቆ
IChPy × √Dయ

5.69108
ቇ ×

⎝

⎜
⎛ 1

1− 1
75.25059

N × (CL × IChPy)⎠

⎟
⎞

 (8) 

S = ቆ(7.06495 × NN) − ൬
1
D
− 16.54812൰ቇ

× ቆ
1

൫(−1.30340 × D) + 1.24146൯ × (−1.30340 − Bi)
− 9.89024ቇ

×

⎝

⎛ 1

ටD + 1.61168
D + NN⎠

⎞ × ൬−4.59823 −
1

11.88665 − (D + Bi)
൰ 

(9) 

pH = ൬exp
1

0.45182
൰× ൫tanh൫(ln CL − (NN + 8.79182)) + (0.88256 × D)൯൯ଷ

× ቆ
√Dయ × 4.12122
√Dయ + 7.79103

ቇ × ඨ
−0.09363 − Bi
exp(−4.77258)

మళ
 

(10) 

Table 5. GEP results. 

Parameter Value 
Py Chpy S pH 

Training RMSE 0.1415 0.0154 121.8109 0.5556 
R-square 0.936 0.917 0.891 0.915 

Validation RMSE 0.1409 0.0147 150.3013 0.5435 
R-square 0.921 0.91 0.861 0.888 

 
Figure 8. Cross-plot of model results versus measured data for data validation on the remaining pyrite fraction. 
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Figure 9. Cross-plot of model results versus measured data for data validation on the remaining chalcopyrite 

fraction. 

 
Figure 10. Cross-plot of model results versus measured data for data validation on the sulfate content. 

 
Figure 11. Cross-plot of model results versus measured data for data validation on the pH value. 

Figures 12 and 13 demonstrate the identified 
relationships between the measured data and the 
predicted data for the output parameters. The 
coefficients of determination for the remaining 
pyrite fraction, remaining chalcopyrite fraction, 
sulfate, and pH were 0.92, 0.91, 0.86, and 0.89, 

respectively. Due to the high values of the 
correlations between the predicted data and the 
measured data, it seems that GEP could predict the 
output parameters, and could be applied in similar 
cases.  
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(a) (b) 

Figure 12. Relationship between the predicted data and the measured data for a) the remaining pyrite fraction 
and b) the remaining chalcopyrite fraction. 

  

(a) (b) 

Figure 13. Relationship between the predicted data and the measured data for a) sulfate and b) pH values. 

4. Conclusions 
The GEP algorithm was applied in order to 

suggest four relationships in the AMD generation 
process based on the pyrite and chalchopyrite 
oxidation process in copper tailing particles. For 
this, a dataset including 70 actual data was built. 
Then it was divided into the training data including 
30% of data, and the rest of the data was applied as 
the validation set for evaluating the GEP 
prediction. Then using the GEP algorithm, three 
empirical relationships were proposed for 
predicting the remaining pyrite fraction, remaining 
chalcopyrite fraction, sulfate content, and pH 
values based on the tailings depth, concentrations 
of bicarbonate, chloride, nitrate, nitrite, and initial 
pyrite and chalcopyrite fractions. Accordingly, 
RMSE of the validation models was calculated as 
0.1409, 0.0147, 150.301, and 0.5435 for the pyrite, 
chalcopyrite, and sulfate concentrations, and pH 
value, respectively, associated with 0.92, 0.91, 
0.86, and 0.89, respectively. The low value of 

RMSE and high values of coefficients of the 
determination indicated an appropriate estimation 
of the parameters affecting the oxidation process of 
sulfide minerals and AMD production. Also other 
techniques such as the multiple linear regression 
and other AI techniques such as ANNs or GP could 
be applied for a better evaluation of the GEP 
results. 
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  چکیده:

هاي ناشی از معدن مس سرچشمه که در جنوب ایران قرار دارد، زهاب اسیدي معدن در ذرات باطله بینی احتمال فرآیند تولیددر این تحقیق، یک روش کمی پیش
وریتم مانده، غلظت سولفات و اسیدیته با استفاده از روش الگمانده، میزان کالکوپیریت باقیبینی، میزان پیریت باقیارائه شده است. در حقیقت، چهار رابطه براي پیش

اي مناسب، برخی از با اهمیت ترین پارامترها مانند عمق قرارگیري ذرات باطله، اند. براي نیل به این هدف، پس از گردآوري یک پایگاه دادهشدهبیان ژن، پیشنهاد 
هاي درصد از داده 30د. سپس، هاي ورودي درنظر گرفته شدنکربنات، نیتریت، نیترات و کلراید، بعنوان دادههاي بیمیزان پیریت اولیه، کالکوپیریت اولیه و نیز غلظت

ها بودند. در ادامه، روابط با مانده پایگاه دادهدرصد باقی 70هاي اعتبارسنجی، شامل ها انتخاب شدند، در حالیکه دادهورودي بصورت تصادفی جهت آموزش داده
، 140/0) و نیز میزان کم مقادیر مجذور میانگین مربع خطاها (89/0و  86/0، 91/0، 92/0استفاده از روش بیان ژن پیشنهاد شدند. مقادیر بالاي ضرایب تعیین (

مانده، غلظت سولفات و اسیدیته، حاکی از آن است که اعتبارسنجی این مانده، میزان کالکوپیریت باقی) در تعیین میزان پیریت باقی543/0و  301/150، 014/0
ل زهاب بینی فرآیند تشکیتواند بعنوان یک روش نوآور جدید در پیشکه روش الگوریتم بیان ژن می روابط بخوبی انجام شده است. نتایج بدست آمده نشان دادند

 اسیدي معدن بکار گرفته شود.
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