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Abstract 
One of the major strengths of a Geographic Information System (GIS) in geosciences is the ability to integrate and 
combine multiple layers into mineral potential maps showing areas which are favorable for mineral exploration. These 
capabilities make GIS an extremely useful tool for mineral exploration. Several spatial modeling techniques can be 
employed to produce potential maps. However, these methods can be divided into knowledge - and data- driven 
techniques. The goal of this study is to use GIS in mapping gold deposit potentials in Torud-Chah Shiran area. After 
collecting relevant exploration data and defining appropriate exploration model for the mineralization zone, several 
layers including proved mineralization map, geological map, remote sensing derived, alteration map, geochemical and 
aeromagnetic maps were imported in to GIS environment. For integrated exploration modeling, two methods were used: 
fuzzy logic and weight of evidence methods. Finally, the results of the two methods were compared. The result of each 
method had statistical problems but these problems were alleviated using the map of differences that was in a good 
agreement with reality. 
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1. Introduction 

Models for spatial data analysis in GIS are 
simplified representations of natural phenomena. 
The rational for this simplification is related to the 
complexity of the natural processes, and the 
limitations of the mathematical techniques used 
for representing these phenomena. The 
consequence is a reduction on our explanatory 
capability, since the simplified relationships used 
in the model may cause misleading or incomplete 
conclusions. The formation of a mineral deposit is 
a good example of such a situation. Since the 
complexity of the physical and chemical 
conditions involved in the mineralization 
processes cannot be adequately mathematically 
expressed, the success of a prospecting model 
depends mainly on empirical relations (deposit 
models). These models consist of a large number 
of known deposits, considered to be sufficiently in 
terms of their characteristics, which are used as 

guides (description models) for prospecting 
similar deposits. Therefore, in GIS-based studies, 
“deposit model” plays an important role both in 
the selection and derivation of the data that will be 
considered as evidence, as well as in the definition 
of the weights assigned to the evidence. To 
become an effective tool for geological 
exploration, a prospecting model must be 
supported by appropriate geological basis and 
adequate mathematical support. Following these 
principles, several investigators used prospecting 
model as auxiliary tools for mineral prospecting 
[1-4]. 
Interpretation of aeromagnetic, Landsat TM, 
geological and mineral occurrence data are used to 
recognize a combination of mapped geological 
features, spectral characteristics, and magnetic 
signatures that could be associated with 
epithermal gold, arsenic, antimony, and base 
metal deposits near Takab (NW Iran). Four binary 
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maps representing diagnostic deposit recognition 
criteria were combined in a weights-of-evidence 
model, which uses the spatial distribution of 19 
known mineral occurrences to calculate a final 
map of further gold and base metal potential in the 
Takab area [5]. 
As a contribution to this theme, the present study 
compares the results of different methods of 
spatial analysis. These methods involved fuzzy 
logic and weights of evidence methods to predict 
potential area for gold and base metal occurrences 
in the Torud-Chah Shiran metallogenic zone in 
Iran (Figure 1).  
 

 
Figure 1. Location of Torud-Chah Shiran mineral field in 

the Alborz magmatic belt of northern Iran. 

The fuzzy logic method is one of knowledge–
driven methods while weight of evidence is 
considered to be in the category of data-driven 
methods. The techniques of spatial inference were 
applied according to a prospecting model based 
on four diagnostic criteria which are presence of 
particular geological units, presence of structural 
features, presence of geophysical anomalies, and 
presence of geochemical anomalies obtained from 
stream sediments data. Twenty previously 
recognized mineral occurrences were used as a 
guide to estimate the performance of the obtained 
results.  

2. Geological description of the study area  

Torud-Chah Shirin range mainly consists of 
igneous rocks of Tertiary age, although there are 
also scattered outcrops of metamorphosed 
Paleozoic and Mesozoic rocks. Structural patterns 
are controlled by two principal strike-slip faults, 
Anjilow in the north and Torud in the south, both 
with northeast trends as shown in Figure 2 [6]. 
The Torud-Chah Shiran range, which lies in the 
central to eastern portion of the Alborz mountain 

system, is the largest known gold and base metal 
province of Iran [7,8]. In this province, the 
northern Iran region hosts five gold and base 
metal deposits, i.e., Gandy (Au-Ag-Pb-Zn), 
Abolhassani (Pb-Zn-Ag-Au), Cheshmeh Hafez 
(Pb-Zn), Chalu(Cu), Chahmosa (Cu), pousideh 
(Cu), Baghu and Arghash(Au-Sb) deposit. Other 
types of deposits in this range include placer gold, 
an underground mine for turquoise at Baghu, 
skarn deposits, and Pb-Zn deposits in carbonate 
rocks. 
The Gandy and Abolhassani areas are about 3 km 
apart, and each contains a small abandoned Pb-Zn 
mine. Mineralisation at Gandy occurs in quartz 
sulfide veins and breccias and is accompanied by 
alteration halos of quartz, illite, and calcite. 
Mineralisation in the Abolhassani veins occurred 
in three main stages. The first two stages, which 
are economically important, contain similar 
mineral assemblages, including quartz, calcite, 
barite, galena, sphalerite, pyrite, and 
chalocopyrite, whereas the final stage is 
dominated by quartz and calcite. The mineralogy 
of ore, gangue, and alteration products, combined 
with fluid inclusion data from both areas, indicate 
that these are intermediate-sulfidation epithermal 
veins that share characteristics with those of major 
districts in Mexico, western United State, Peru, 
and elsewhere.  The presence of geochemical 
anomalies and many ore showings abandoned 
mines (Figure 2) with similar epithermal 
characteristics suggests that the Torud-Chah 
Shiran range is prospective for high-grade gold 
veins and base metal epithermal deposits [8,9].     

3. Datasets collected for the present study 

3.1. Geological map  
Data sets used in the current paper are, a 
geological map and lineaments map digitized 
from the 100,000 scale geological map of the area 
published by Geological Survey of Iran, figure 2. 
Peak magmatic activity has occurred from middle 
to possibly late Eocene and has been divided into 
three stages, from oldest to youngest as follows: 
(1) explosive volcanic activity represented by 
rhyolitic to rhyodacitic tuffs and locally andesitic 
lava flows, with subordinate marls, tuffaceous 
marlstones, and sandstones; (2) lava flows and 
pyroelastic rocks of andesite, trachyandesite, and 
basaltic andesite composition; and (3) subordinate 
dacitic-rhyodacitic rocks and hypabyssal intrusive 
rocks. 
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Figure 2. Generalized geological map of study area. Mineralized zones are outlined in dark. Dark circles are locations of gold 

and base metal deposits. 

3.2. Faults/fractures map 
In the study area, faults/fractures can influence 
localisation of stream sediment anomalies because 
(a) such geological features are common loci of 
epithermal Au deposits, whose element contents 
find their way into streams due to weathering and 
erosion and (b) the presence of such geological 
features indicates enhanced structural 
permeability of rocks in the subsurface, which 
facilitates upward migration of ground waters that 
have come in contact with and have leached 

substances from buried deposits. These arguments 
suggest that the significance of multi-element 
stream sediment anomalies in sample catchment 
basins can be screened or examined further by 
using fault/fracture density as a factor [10]. Figure 
3, shows a map of faults/fractures in the study 
area, indicating that the epithermal Au deposits 
are localised mostly along certain north-
northwest-trending faults/fractures. A 
fault/fracture density map can be created by 
calculating, per sample catchment basin, the ratio 
of number of pixels representing faults/fractures 
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in a sample catchment basin to number of pixels 
in that sample catchment basin. Most of the 
epithermal Au deposit occurrences in the study 
area are situated in sample catchment basins with 
moderate to high fault/fracture density (Figure 3).  
Using the geological map of Moalleman area and 
investigating the trends of the faults in the area, 
we digitized the linear geological structures 
related to gold, lead and zinc mineralization. 
Figure 3 indicates the map of the faults and gold 
mineralization in the area. 

3.3. Alteration, aeromagnetic and 
lithogeochemical maps. 
We used combination band ratios (band5/band7, 
band4/band5, and band1/bandt3) of Landsat 
ETM+ satellite images data as a set representing 
hydrothermal alteration intensity evidence for 
modeling prospectivity for epithermal Au and 
base metal deposits in the Torud-Chah Shiran area 
(Figure 4). 

 

 
Figure 3. Map of faults/fractures in the stady are, compiled mostly from unpublished literature, geological and geophysical 

map. 
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Figure 4. The hydrothermal alteration zones generates from the combinations selected Landsat ETM+ satellite images band 

ratios (5/7, 4/5, 1/3) 
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In this research work, the aeromagnetic map 
provided by the Geological Survey of Iran, was 
used for combination with other exploration maps. 
The aeromagnetic map was obtained following an 
airborne survey, carried out by Aeroservice 
Company, with flight lines spaced 7.5 km and 
constant altitude. It should be mentioned that 
other aeromagnetic maps with higher qualities, 
have also been provided that unfortunately, do not 
cover the whole study area, and are merely used 
for reviewing of geophysical data. Figure 4 shows 
the airborne magnetic map of the Moalleman area. 
As seen from this Figure, Gandi Au deposit is 
located in the vicinity of high total magnetic 
zones. 

3. Fuzzy logic method 

The fuzzy logic approach, which is considered to 
be one of the knowledge-driven methods, can be 
effective as a method to weight and combine 
spatial evidences when the proposition (such as 
“this location is favorable for mineral deposits”) is 
vague [11]. Fuzzy logic uses membership 
functions (µ) and various different combination 
operators. Mathematically, a fuzzy set, A, is a set 
of ordered pairs:  

}))(,{( XxxxA A ∈= µ , 

where X= collection of objects, also known as 
the universal set and µ(x) = membership 
function or degree of compatibility of x in 
µ(x) (An, et al., 1991). The range of µ(x) is [0, 
1], where 0 represents non-membership and 1 
represents full membership. An, et al. (1991) 
 

 
Figure 5. Geophysical data sets, residual total magnetic 
intensity (nT) (from Shuigen and Jianchang, 1996) used 

in the study. 

 

 
Figure 6. A map of spatial data of interest. Selection of spatial data by using attribute conditions is useful in analysis of 

geochemical data pertaining to different lithologies.  
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discussed five operators that were found to be 
useful for combining exploration datasets, namely 
the fuzzy AND, fuzzy OR, fuzzy algebraic 
product, fuzzy algebraic sum and fuzzy gamma 
operator. The fuzzy OR, for example, is like the 
Boolean OR (logical union) in that the output 
membership values are controlled by the 
maximum values of any of the input maps, for any 
particular location. Using this operator, the 
combined membership values are limited by the 
most suitable of the evidential map patterns. The 
OR-operator can be used where two map patterns 
represent the same level of evidence, and the 
combinations suggest evidence at higher 
probability. Gamma operator (γ ) is a 
combination of the fuzzy algebraic product and 
the fuzzy algebraic sum, and produces output 
values that ensure a flexible compromise between 
the increasing tendencies of the fuzzy algebraic 
sum and the decreasing effects of the fuzzy 
algebraic product. Bonham-Carter [12], An et al. 
[13] and Cheng and Agterberg [14] presented 
additional information on the fuzzy operators for 
combining geological data.  
Figure 7 shows three parallel networks that 
sequentially combine collateral fuzzy evidential 
maps transmitted by the fuzzifier through the 
fuzzy OR and fuzzy AND operators to yield three 
intermediate fuzzy evidential maps in the first 
stage, which are combined in the second stage 
using the fuzzy γ  operator to generate the 
synthesized fuzzy favorability map. The maps that 
more likely to be conditionally-dependent were 
combined in the first stage of the inference engine 
using the fuzzy AND and the fuzzy OR operators. 

The choice of the fuzzy AND operator or the 
fuzzy OR operator in the parallel networks 
described above depended upon whether the 
presence of only one of the two fuzzy predictor 
maps to be combined was sufficient for the 
recognition of base-metal deposits in the province. 
The intermediate fuzzy predictor maps were 
combined in the second stage of the inference 
engine using the fuzzy operator γ  with γ = 0.9, 
0.83 and 0.93 to produce the three synthesized 
fuzzy favorability map. The map using γ =0.9 
was selected since the threshold combined fuzzy 
favorability value narrows down the search area 
more judiciously in this map. The resulting binary 
favorability map is shown in Figure 8. 

3.1 Model validation 
The fuzzy logic (knowledge-driven) model was 
validated by overlaying the locations of known 
mineral deposits which are different from training 
data on the binary favorability map. Figure 8 
showing the binary favorability map in which the 
high favorability areas, where occupy 14% of the 
study area that contain 83.4% of the known base-
metal deposits. 

4. Weights of evidence method 

Weight of evidence (WofE) method is a 
quantitative method that uses a log-linear 
formulation of Bayes’ rule of probability with an 
assumption of conditional independence to 
combine map patterns. WofE has been used by 
geologists to identify areas favorable for geologic 

 
Figure 7. Generating synthesized fuzzy favorability map in Figure 8. 
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Figure 8. Potential map generated by fuzzy logic method 

 
phenomena, such as mineralisation and seismicity. 
The WofE method allows one to explore the 
spatial relationship between known mineral 
deposits and exploration data sets from a variety 
of sources (Bonham-Carter 1994). In mineral 
exploration applications, a series of evidence 
maps (evidential themes) derived from 
geochemical, geophysical and geological data sets 
are combined to produce a mineral prospectivity 
(or potential) map. The spatial association of each 
evidential theme is assessed with respect to the 
locations of known deposits, used as training 
points. Because most studies of this type have 
only a limited number of deposits, it is 
advantageous to generalise the maps to a small 
number of classes, often to binary classes, because 
a weight is estimated for each class and these 
estimates are not robust when the number of 
training points is small. A pair of weights, W+ 
and W-, determined from the degree of overlap 
between the known deposits and the binary 
evidence map (e.g. geochemical anomaly map), is 
calculated for each map to be used as evidence. If 
there is no spatial association between the training 
points and the binary evidence map, then W+ = 
W- = 0. A positive W+ value indicates a positive 
association between training points and the 
evidence map. In this case, more of the known 
deposits occur on the map class than would be 
expected if the number of deposits occurring there 
could be explained as due to chance. Conversely, 

a negative association implies the occurrence of 
fewer known deposits on that map class than 
would be expected due to chance. The contrast 
value C, where C = W+ - W- , is a summary value 
that reflects the degree of spatial association 
between the evidence map and the mineral 
prospects (Table 1). The larger the C value, the 
greater is the spatial association. A study of 
weights and contrast values can facilitate the 
process of identifying breaks between background 
and anomalous values in geochemical data, or in 
identifying critical distances on evidential themes 
related to proximity to spatial objects [12]. The 
process of evaluating weights, contrast and 
reclassifications gives invaluable insight into the 
spatial associations present in the data (e.g. 
separation of background from anomaly in 
geochemistry, selection of optimal distances for 
buffering linear features, etc.). The effects of 
various sources of uncertainty on the final result 
can be modeled, such as the variances of weights 
and the variance due to missing data (incomplete 
surveys). A recent development allows the effect 
of kriging variance on the weights to be modeled 
[14]. The principal disadvantage of WofE method 
is that it assumes conditional independence 
between the data (evidence maps) (e.g. an 
elevated concentration in Au is independent of an 
elevated concentration in Zn, conditional on the 
locations of deposits). This conditional 
independence  
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assumption is often violated when producing a 
prospectivity map, although the degree of 
violation depends on the choice and number of 
maps used as predictors. 
One consideration with the WofE approach is the 
issue of conditional independence between the 
evidence maps. The nine binary maps were used 
to model mineral favorability but statistical tests 
showed some disagreement with conditional 
dependence, and thus, a recombination of the 
maps by factors was applied. Therefore, some 
evidence maps were combined resulting in four 
factor maps: geological factor, structural factor, 
geochemical factor, and geophysical factor. This 
favorability map is shown in Figure 9. 
However, the omnibus test of conditional 
independence gives a value of 0.952 for the 
conditional independence ratio between the four 
factor maps, which still indicates conditional 
dependency amongst some of input predictor 

maps. This also suggests that values less than 0.85 
may indicate a problem [12].  

4.1 Model validation 
The WofE (data-driven) model was validated by 
overlaying the locations of known mineral 
deposits on the binary favorability map (Figure 9) 
showing that in the binary favorability map, high 
favorability areas, which occupy 7.3% of the 
study area, contain 61.3% of the known base-
metal deposits. 

5. Comparison of fuzzy logic with weights 
of evidence results 

To compare the results of fuzzy logic and WofE 
methods, map of differences obtained from the 
WofE and fuzzy logic modeling was prepared 
(Figure 10).  The differences map was validated 
by overlaying the locations of known mineral 
deposits on the binary favorability map. Figure 9

Table 1(a). Summary statistics results for WofE analysis. 
Cu  

Class  Area_Sq_km Points C S_C stud_C_ 

Missing data 0.1738 1 0.0000 0.0000 0.0000 

1(< 70%) 134.3838 18 3.3759 0.7529 4.4840 

0(> 70%) 378.1939 2 -3.3646 0.7528 -4.4693 

Ag  

Missing data 0.1738  1 0.0000 0.0000 0.0000 

1(< 70%) 59.7538 6 1.2482 0.5088 2.4532 

0(> 70%) 452.8239 14 -1.2482 0.5088 -2.4532 

pb 

Class Area_Sq_km Points C s_C_ stud_C_ 

Missing data 0.1738 1 0.0000 0.0000 0.0000 

1(< 70%) 110.6232 14 2.2540 0.5009 4.4996 

0(> 70%) 401.9546 6 -2.2540 0.5009 -4.4996 

Zn 

Class Area_Sq_km Points C s_C_ stud_C_ 

Missing data 0.1738 1 0.0000 0.0000 0.0000 

1(< 70%) 47.6618 4 0.9365 0.5809 1.6122 

0(> 70%) 464.9160 16 -0.9365 0.5809 -1.6122 

Au  

Class Area_Sq_km Points C s_C_ stud_C_ 

Missing data 0.1738 1 0.0000 0.0000 0.0000 

1(< 70%) 102.1085 14 2.3738 0.5019 4.7295 

0(> 70%) 410.4693  6 -2.3601 0.5018 -4.7032 

Area_Sq_km: area, measured in square km, Points: number of training points occurring in that 
condition, C: Contrast, s-C: standard deviation, stud_C: Studentized Contrast, which is the 
contrast, divided its standard deviation, a measure of spatial association between the deposits 
and the geochemical anomaly. 

 



Ziaii et al./International Journal of Mining & Environmental Issues, Vol.1, No.1, 2010 

 

 25 

Table 1(b). Summary statistics results for WofE analysis. 
 geophysics  

Class (intensity) Area_Sq_km Points C s_C_ stud_C_ 

40%> 313.8778308 2 -0.236769 0.7458348 -0.317455 

70%> 95.5067964 2 1.0570945 0.7508131 1.4079328 

90%> 186.7877957 4 1.1556289 0.5609841 2.0600031 

80%> 421.6935264 13 2.1873892 0.4525707 4.8332537 

faults 

Class (Buffer) Area_Sq_km Points  C s_C_ stud_C_ 

100 m 86.0525 4 -0.0808 0.5983 -0.1350 

200 m 73.3935 1 -1.5312 1.0440 -1.4667 

300 m 58.4778 4 0.4632 0.6030 0.7682 

400 m 47.0714 1 -0.9705 1.0475 -0.9265 

500 m 39.9143 5 1.2928 0.5766 2.2420 

geology 

Class Area_Sq_km Points C  s_C_ stud_C_ 

Dacit 14.4990 5 2.3924 0.6261 3.8215 

Eal 2.7476 1 2.0458 1.2501 1.6366 

R-r 2.7927 1 2.0458 1.2501 1.6366 

Klsh 16.3568 2 0.8070 0.7987 1.0103 

Esp 17.2571 2 0.7340  0.7957 0.9224 

alterations  

Class (Buffer) Area_Sq_km Points C s_C_ stud_C_ 

500 m 83.4039 13 1.4765 0.4900 3.0131 

1000 m 63.3741 2 -1.1490 0.7601 -1.5118 

1500 m 58.5021 5 0.1109 0.5392 0.2057 

2000 m 50.1777 0 0.0000 0.0000 0.0000 

 

 
Figure 9. Potential map generated by logistic regression method. 
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shows that in the binary favorability map, high 
favorability areas, which occupy 5.5% of the 
study area, contain 72.2% of the known base-
metal deposits. 

5. Comparison of fuzzy logic with weights 
of evidence results 

To compare the results of fuzzy logic and WofE 
methods, map of differences obtained from the 
WofE and fuzzy logic modeling was prepared 
(Figure 10).  The differences map was validated 
by overlaying the locations of known mineral 
deposits on the binary favorability map. Figure 9 
shows that in the binary favorability map, high 
favorability areas, which occupy 5.5% of the 
study area, contain 72.2% of the known base-
metal deposits. 
As can be seen from Table 2, the values in the 
difference map for high favorability area are 
reduced. Similarly, the confidence values show 
that difference map is reliable for mineral 
exploration in the study area. 

6. Conclusions 

A major benefit of WofE is the unbiased 
statistically derived weights it provides for 
individual layers of data. However, WofE is 
perceived by many users as both an 
oversimplification, due to its typically binary 
input, and yet overlay complex in mathematics. 

Multi-class WofE offers better representation of 
data distribution, but statistical noise can 
sometimes limit the effectiveness of multi-class 
weights. For example, potential maps generated 
from logistic regression method are not robust 
when the number of training points is limited. 
Fuzzy logic methods offer gradational weighting 
schemes for individual data layers and relatively 
simple arithmetic operations for combining 
evidence layers into predictive models. With 
fuzzy logic, when data layers are assembled, it is 
carried out  rom an expert’s point of view. Expert 
input ensures the appropriate use of data, but the 
advantages of unbiased statistical weighting are 
diminished. 
To provide a robust map of results, the maps were 
compared with each other and as a result, a map 
of rank differences was obtained. Finally, the 
results were tested by real field information, thus, 
the differences map was more fitted to the existing 
ground reality. 
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Figure 10. Map of rank differences comparing results obtained from the weights of evidence and fuzzy logic modeling. 
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Table 2. Percentage of confidences from generated maps. 
Name High favorability areas Validation Confidence 
Knowledge-driven map 14% 83.4% 84% 
Data-driven map 7.3% 61.3% 88% 
Deference map 5.5% 72.2% 93% 
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