

Journal of Mining & Environment, Vol.8, No.1, 2017, 75-81. DOI: 10.22044/jme.2016.571

Investigation of parameters affecting desilication of diasporic bauxite in Jajarm mine by thermo-chemical treatment

M. Rezaee Rad¹*, S. Shahhoseini², M. Janfada¹, H.A. Mirzaee³ and P. Kelidari¹

1. Jajarm Alumina Complex, Jajarm, Iran

2. School of Chemical Engineering, Iran University of Science and Technology, Tehran, Iran 3. School of Mining Engineering, College of Engineering, University of Tehran, Tehran, Iran

Received 21 June 2015; received in revised form 6 January 2016; accepted 18 January 2016 *Corresponding author: mohammadrad.r@gmail.com (M. Rezaee Rad).

Abstract

Low grade diasporic bauxite in the Jajarm mine with an A/S (Al₂O₃/SiO₂) ratio of 2.3 is not usable in the Bayer process at Jajarm Alumina Complex. Due to the severe interlocking effect between the diaspore and aluminosilicate minerals (Chamosite and Kaolinite) and iron-containing minerals in a microcrystal matrix, the thermo-chemical treatment, which is independent from micro-mineralogy, was chosen for bauxite desilication. Five parameters affecting the process and their interactions were investigated using the Taguchi experimental design method. The results obtained showed that there was an interaction between the furnace temperature and the leaching time. Moreover, the optimum values for the parameters involved in the thermo-chemical treatment were determined to be a furnace temperature of 950 °C, a furnace residence time of 90 min, a leaching agent (soda) concentration of 150 g L⁻¹, and a leaching time of 120 min, where the solid content (in leaching) had no effect. Moreover, a model was proposed using the Dx7 software to predict the A/S ratio. The ratio was predicted to be 7.52 at the optimum conditions, whereas in the experiments carried out under the same conditions, it was obtained to be 6.96 \pm 0.2, which means a 59% decrease in silica and an increase in the A/S ratio of up to 3 times with 80% weight recovery.

Keywords: Interaction Effect, Bayer Process, Desilication, Bauxite, Thermo-Chemical.

1. Introduction

Increasing the demand for bauxite as the main resource for aluminum production has led to a considerable growth of its global production capacity in the recent years [1]. The most important and problematic minerals in the bauxite deposit are those that contain active silica, which have very undesirable effects on the Bayer process efficiency so that for 1 ton of silica in the composition of clay minerals, 1 ton of soda has to be consumed [2]. Bauxites with an A/S ratio of less than 6.25 and a silica content higher than 8% Wt. are known as high silica bauxites, which are non-economical for the Bayer process [3]. The Bayer process is simple at a glance, although, in practice, bauxite imposes very

difficult chemical conditions in the process owing to its heterogeneous and complicated nature. Bauxite impurities such as organic carbons and silica, and their reactions and precipitation in the solution reduce the efficiency of bauxite refinery. There are many ways to reduce the damages on the process efficiency resulting from impurities. However, these methods are expensive and increase the complexity of the plant flow sheet [4]. Bauxite upgrading methods such as the screening/washing, floatation, gravity separation, magnetic separation, and thermochemical method depend on the bauxite recognition from a microscopic viewpoint (texture, liberation degree, and mineralogical

association type) [3]. In high silica bauxites, whose alumina minerals have a low liberation degree due to severe interlocking between the minerals, the thermo-chemical method has a considerable effect on the silica removal as a pre-treatment procedure [5]. This method has been tested by Saint Petersburg's VAMI Complex in a pilot scale [6]. The aim of bauxite heating is the formation of maximum amorphous silica, while formation of the mullite mineral is kept at its minimum value. Mullite does not dissolve in soda, and causes lots of difficulties for the Bayer process [7]. Kaolinite is an important alumosilicate material since it is the active silica in bauxite. Several studies have been conducted to investigate the thermal transformation of kaolinite. Based on these investigations, the kaolinite chemical transformation has been identified as follows [8]:

1. Dehydroxylation at a temperature of about 420-660 °C results in the formation of metakaolinite (Al₂O₃.2SiO₂): $Al_2O_3.2SiO_2.nH_2O \rightarrow Al_2O_3.2SiO_2 + nH_2O$

2. Decomposition of metakaolinite at a temperature above 980 °C results in the formation of amorphous SiO₂ and γ -Al₂O₃: Al₂O₃.2SiO₂ $\rightarrow \gamma Al_2O_3 + 2SiO_2$ (Amorphous)

3. Recrystallization of the amorphous substances forms mullite at above 1100 °C: $\gamma A l_2 O_3 + 2SiO_2$ (Amorphous) $\rightarrow 3A l_2 O_3 \cdot 2SiO_2$

The formation of mullite through the alumina-silica reaction at a temperature range of 1200-1400 °C, and then transformation of mullite to a glassy phase at a temperature around 1900 °C has also been reported [9]. Amorphous SiO₂ is easily soluble in soda (NaOH). Increasing the soda concentration not only improves the amount of silica

dissolution but also extracts a little bit of Al_2O_3 [10, 11].

This study aims to investigate the parameters affecting the thermo-chemical process with the purpose of reduction of silica in the Jajarm bauxite mine using an experimental design method. The Taguchi model is suitable for the processes that are in early stages of designing, with high number of parameters in different levels [12, 13]. This method inspects the whole space of the parameters with a few numbers of the experiments using a particular design of orthogonal arrays, and determines the effective parameters and their optimum values causing considerable reduction in the optimization cost and time [14, 15]. Therefore, in this research work, the Taguchi method was chosen to design the experiments for considering several parameters and their levels.

2. Materials and method

2.1. Mineralogy of low-grade Jajarm bauxite

Low-grade diasporic bauxite is not a usable material in the Jajarm mine since it has 38.09% Al₂O₃ and 16.61% SiO₂, resulting in an A/S (Al₂O₃/SiO₂) ratio of 2.29 (shown in Table 1).

Hematite, which contains 14.1% iron, is the main iron-containing mineral of bauxite. Aluminosilicate-containing minerals are mainly chamosite (13.4%) and kaolinite (18.4%), as shown in Table 2.

A huge mass of the Jajarm mine consists of high silica bauxite, in which diaspore and aluminosilicates (chamosite, kaolinite) are finely interlocked so that they are surrounded by iron-containing minerals, especially hematite. These blocks often have ooliticconcretion texture, and, in some cases, nodular texture is also found (Figure1) [16].

Table 1.	Chemical	composition	of Jaiarm	low-grade	bauxite (analyzed by	v XRF).
		eomposition.	01 0 mJ m m		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		,,

Al ₂ O ₃	SiO ₂	Fe ₂ O ₃	TiO ₂	CaO	MgO	K ₂ O	Na ₂ O	L.O.I	
38.09	16.61	22.75	4.6	1.1	0.43	0.35	1.24	14.83	

	Table 2. Minerals of Jajarm low-grade bauxite (analyzed by XRD).								
Diaspore	Hematite	Goethite	Anatase	Calcite	Cancrinite	Iilite	Chamosite	Kaolinite	
33.2	14.1	3.6	4.6	1.8	6.8	4.1	13.4	18.4	

Figure 1. a) Diaspore (dia) oolitic texture b) Interlocking of diaspora (dia) with aluminosilicates (Al-Si).

2.2. Procedure in laboratory scale

Samples were taken from different places of a low-grade bauxite dump. They were then crushed until below 20 mm, and divided to several smaller samples. Calcinations were conducted on the smaller samples in an electrical furnace. Afterwards the cooled samples were ground to nearly 90 microns in a laboratory ball mill in dry mode, and prepared for leaching tests at 90 $^{\circ}$ C. Industrial-grade soda was used for all of the experiments as the leaching agent. Some parameters that could be more effective on the bauxite upgrading (decreasing silica-containing bauxite) by the thermo-chemical

method were furnace temperature (A), furnace residence time for bauxite with 20 mm diameter (B), soda concentration (C), solid content in leaching (D), and leaching time (E), which were examined in three different levels corresponding to the L_{27} orthogonal array pattern requested by the Taguchi experimental design method (Table 3). In addition, the amount of bauxite SiO₂ content was chosen as the response for the DX7 software. The response with 95% confidence was analyzed to find the optimum value for each parameter.

|--|

Donomotore		Levels	
Parameters	1	2	3
A Furnace temperature (°C)	950	1000	1050
B Furnace residence time (min)	30	60	90
C Soda concentration (g L^{-1})	100	150	200
D Solid content in leaching $(g L^{-1})$	300	350	400
E Leaching time (min)	60	120	180

3. Results and discussion

The main purpose of conducting this study was to determine the parameters affecting the silica removal and their optimum value, in which the maximum yield for silica removal could be obtained. Table 4 shows the percentage of the bauxite SiO₂ content and the A/S (Al₂O₃/SiO₂) ratio in each experiment according to the L₂₇ pattern. In Table 5, the results of the analysis of variance (ANOVA) using the Dx7 software are shown, where SiO₂% is the response with 95% confidence. Therefore, the P-value of each parameter had to be less than 0.05. The results obtained from the analysis indicated that the solid content (D) with a P-value of 0.5 could not be considered as a principle and influential parameter. In addition, only the interaction between the furnace temperature (A) and leaching time (E) had an impact on the response. As Figure 2 shows, two parameters showed interactions in a slight span.

				array	•		
No	Α	B	С	D	Ε	SiO ₂	Module
1	950	30	100	300	60	10.99	3.53
2	950	30	100	300	120	9.86	4.15
3	950	30	100	300	180	12.11	3.39
4	950	60	150	350	60	7.84	5.28
5	950	60	150	350	120	7.1	6.18
6	950	60	150	350	180	7.73	5.54
7	950	90	200	400	60	7.5	6.1
8	950	90	200	400	120	6.24	6.79
9	950	90	200	400	180	7.71	5.92
10	1000	30	150	400	60	10.72	4.21
11	1000	30	150	400	120	9.97	4.26
12	1000	30	150	400	180	8.97	4.76
13	1000	60	200	300	60	9.3	4.78
14	1000	60	200	300	120	8.86	4.73
15	1000	60	200	300	180	9.46	4.28
16	1000	90	100	350	60	10.53	4.30
17	1000	90	100	350	120	9.74	4.69
18	1000	90	100	350	180	8.19	5.27
19	1050	30	200	350	60	11.69	3.57
20	1050	30	200	350	120	9.06	4.48
21	1050	30	200	350	180	9.95	3.99
22	1050	60	100	400	60	13.02	3.38
23	1050	60	100	400	120	12.33	3.46
24	1050	60	100	400	180	9.77	4.55
25	1050	90	150	300	60	10.28	4.75
26	1050	90	150	300	120	7.58	6.86
27	1050	90	150	300	180	7.09	6.84

 $Table \ 4. \ Experiments \ and \ responses \ (Bauxite \ SiO_2 \ content) \ according \ to \ Taguchi's \ L_{27} \ orthogonal$

Table 5. ANOVA results.

Source	Sum of Squares	Mean Square	F-value	P-value Prob>F
Model	64.33	6.43	6.84	0.0004
A- Furnace temperature	10.66	5.33	5.67	0.0138
B- Furnace residence time	19.06	9.53	10.13	0.0014
C- Soda concentration	24.38	12.19	12.97	0.0004
D- Solid content in leaching	1.24	0.62	0.66	0.5301
E- Leaching time	8.98	4.49	4.78	0.0236
AE	8.93	2.23	4.25	0.0186

Figure 2. Interaction between furnace temperature (A) and leaching time (E) for SiO₂ response.

3.1. Validation of final equation of model

After selecting the effective parameters, the software recommended an equation, which could be used to calculate the bauxite SiO_2 content in a variety of the values for the parameters.

 $SiO_2 = 9.39 - 0.83A[1] + 0.13A[2] + 0.98B[1] +$

0.098B[2]+1.33C[1]-0.81C[2]+0.82E[1]-0.42E[2]Letters show the codes used for the parameters.

[] shows the number of levels.

At first, the software determines the statistical parameters (shown in Table 6) to assess the validation of the SiO_2 calculation equation that comes from a regression model.

 Table 6. Parameters for validation of model.

Adequate precision	10.549
Pre-R squared	0.5383
Adj-R squared	0.7036
P-value	< 0.0001

The model is valid under the conditions where the P-value is less than 0.05, the adequate precision value is more than 4, and the difference between adjusted R squared (Adj-R squared) and predicted R squared (Pre-R squared) is less than 0.2. The results obtained indicated that the proposed model was suitable under these conditions. The Dx7 software also considers three graphs called normal plot of residuals, residuals vs. predicted, and box cox in order to make sure that the chosen model is valid. As shown in Figure 3, the plots in a normal plot of residuals graphs are on a line but in residuals vs. predicted graph are scattered, and lambda location is also in the allowed district defined at box cox graph. Therefore, these results confirm the adequate precision of the model.

Figure 3. Graphs for validation of model.

3.2. Determination of optimum values for effective parameters

Based on the proposed equation, the graphs in Figure 4 show the trend of changing the SiO_2 content in bauxite. Clearly, increasing the furnace temperature causes the formation of mullite (aluminosilicate mineral), and SiO_2 remains in force without dissolution in soda (Figure 4-a). On the other hand, increasing

the furnace residence time decreases the bauxite SiO_2 content, and improves dissolution (see Figure 4-b). Increasing the soda concentration and leaching time up to the second level (150 g L⁻¹ and 120 min, respectively) results in desilication. However, more increase in the level has no effect (see Figures 4-c and 4-d).

Figure 4. Trend of SiO₂ content in bauxite vs a) Furnace temperature b) Bauxite residence time in furnace temperature c) Soda concentration d) Leaching time.

With the purpose of upgrading the process, the optimal values for the parameters were determined using the software, where the SiO_2 content in bauxite was chosen to be the response. Table 7 shows the optimal values for the parameters to achieve the maximum desilication.

The optimization performed using the Dx7 software suggested that the A/S ratio for

concentrated bauxite was 7.52. However, when these optimal conditions were applied in the Jajarm Alumina Complex laboratory, an A/S ratio of 6.96 ± 0.2 with around 6.8% of SiO₂ was obtained, i.e. the Jajarm low-grade bauxite was upgraded by the thermochemical method about 3 times, resulting in 80% weight recovery of usable bauxite, as shown in Table 8.

	Table 7. O	ptimum amount	t of effective	parameters for	[,] maximum	desilication
--	------------	---------------	----------------	----------------	----------------------	--------------

Tuble // Opinium unioune of enecety e pur uniceers for musimum desineuron.								
Parameters	(A) Furnace Temperature (°C)	(B) Furnace residence time (min)	(C) Soda concentration (g L ⁻¹)	(E) Leaching Time (min)				
Level	1	3	2	2				
Amount	950	90	150	120				

Fable 8. Beneficia	l optimization res	ult by	y applying	thermo-chemi	cal proces	s on Jajarm	low-grade
---------------------------	--------------------	--------	------------	--------------	------------	-------------	-----------

	bauxite.		
Component	Al ₂ O ₃ %	SiO ₂ %	A/S ratio
Low-grade bauxite	38.09	16.61	2.29
Prediction of A/S ratio	47.05	6.26	7.52
Actual A/S ratio after upgrading	47.32	6.8	6.96

4. Conclusions

Low-grade diasporic bauxite in the Jajarm mine was experimentally upgraded using a thermo-chemical method and applying the Taguchi's experimental design technique. The results obtained indicated that the solid content in leaching had a minimum effect on the thermo-chemical method. Surprisingly, there was an interaction between the furnace temperature and leaching time parameters. On the other hand, the optimum conditions were obtained as a furnace temperature of 950 °C, a furnace residence time of 90 min for bauxite (with a dimension below 20 mm), a soda concentration of 150 g L^{-1} , and a leaching time of 120 min. The optimal A/S ratio for bauxite was predicted to be from 2.29 to 7.52. The optimal conditions were then applied in practice, resulting in usable bauxite with an A/S ratio of 6.96 \pm 0.15, which meant 59% SiO₂ removal and a 3 times upgrading with 80% Wt. recovery.

Acknowledgments

The authors would like to thank Jajarm Alumina Complex for the support of this research work. The contribution of Mostafa Mahmoudian is also appreciated.

References

[1]. Meyer, F.M. (2004). Availability of bauxite reserves, Natural Resource Research. 13 (3): 161-172.

[2]. Leonard, J. (1984). Proceeding of bauxite symposium. Published by SME Los angles, California, 656 P.

[3]. Smith, P. (2008). Economic processing of high silica bauxite existing and potential processes, (In Australia), Parker Center, CSIRO Light Metals Flagship.

[4]. Bhargava, S., Hollitt, M., Grocott, S., Hartshorn, A., Akolekar, D.B. and Allen, M. (2004). Thermal activation of bauxite, Chemistry in Australia. 71 (5): 6-8.

[5]. Smith, P. Harato, T. and Xu, B. (2009). High silica bauxites- detailed process review, process selection and innovation, (In Australia), Published by Parker Centre, CSIRO Light Metals Flagship. [6]. Rayzman, V.L., Aturin, A.V., Pevzner, I.Z. and Sizyakov, V.M., Ni, L.P. and Filipovich, I.K. (2003). Extracting silica and alumina from low-grade bauxite, Journal of minerals metals. 55 (8): 47-50.

[7]. Xu, B. Smith, P. and Silva, L.D. (2013). The Bayer digestion behavior of transition aluminas formed from roasted gibbsite, International Journal of Mineral Processing. 122: 22-28.

[8]. Qiu, G., Jiang, T., Li, G., Fan, X. and Huang, Z. (2004). Activation and removal of silicon in kaolinite by thermochemical process, Scandinavian Journal of Metallurgy. 33 (2): 121-128.

[9]. Mehta, S.K. and Kalsotra, A. (1992). Hightemperature solid -state transformation in Jammu bauxite, Journal of Thermal Analysis.

[10]. Abdullahi, Y., Ali, E.A. and Lawal, A.O. (2013). Roast alkaline leaching of silica from kaolinitic clay, ARPN Journal of Engineering and Applied Sciences. 8 (10): 864-870.

[11]. Moazemi Ghodarzei, M., Rezai, B. and Keshavarz Alamdari, S. (2007). Desilication studies of diasporic bauxite by thermochemical treatment, Proceedings of the 11th International Seminar on Mineral Processing Technology. 18 (66-C): 79-84.

[12]. Yang, W.H. and Tarng, Y.S. (1998). Design Optimization of cutting parameters for turning operations based on the Taguchi method, J. Materials Processing Technology. 84 (1-3): 122-129.

[13]. Lee, B.H., Abdullah, J. and Khan, Z.A. (2005). Optimization of rapid prototyping parameters for production of flexible ABS object, Journal of Materials Processing Technology. 169 (1): 54-61.

[14]. Nian, C.Y., Yangb, W.H. and Tarng, Y.S. (1999). Optimization of turning operations with multiple performance characteristics, Journal of Materials Processing Technology. 95 (1-3): 90-96.

[15]. Roy, R.K. (2010). A Primer on the Taguchi Method, 2nd edition. Society of Manufacturing Engineers.

[16]. Zarbayani, M., Jorjani, E., Mirmohammadi, M., Shadloo, M.T. and Noaparast, M. (2010). Mineralogical and sink-float studies of Jajarm lowgrade bauxite, International Journal of Minerals, Metallurgy, and Materials. 17 (3): 251-256.

بررسی پارامترهای مؤثر بر سیلیس زدایی بوکسیت دیاسپوری معدن جاجرم به روش ترموشیمی

محمد رضایی رادا ؓ، شاهرخ شاهحسینی ؓ، مهدی جانفدا ؓ، حسینعلی میرزایی ؓ و پرویز کلیدری ٔ

۱- مجتمع آلومینای جاجرم، ایران ۲- دانشکده مهندسی شیمی، دانشگاه علم و صنعت، ایران ۳- دانشکده فنی و مهندسی، دانشکده معدن، دانشگاه تهران، ایران

ارسال ۲۰۱۵/۶/۲۱، پذیرش ۲۰۱۶/۱/۱۸

* نویسنده مسئول مکاتبات: mohammadrad.r@gmail.com

چکیدہ:

بوکسیت دیاسپوری کم عیار معدن جاجرم با مدول (Al₂O₃/SiO₂) ۲٫۳ غیر قابل استفاده در فرآیند بایر مجتمع آلومینای جاجرم است. به علت قفلشدگی شدید کانی دیاسپور با کانیهای آلوموسیلیکات (شاموزیت و کائولینیت) و کانی آهندار (هماتیت) در یک بستر ماتریکس ریز بلور، روش ترموشیمی کـه مستقل از میکرومینرالوژی سنگ است به منظور سیلیس زدایی از بوکسیت انتخاب شد. پنج پارامتر مؤثر و تأثیر متقابل بین آنها توسط طراحی آزمایش تاگوچی و نـرمافزار DX7 بررسی و ضمن تشخیص پدیده تأثیر متقابل بین دمای کوره و زمان لیچینگ، مقدار بهینه دمای کوره ۹۵۰ درجه سانتیگراد، زمان ماند بوکسیت بـا ابعـاد کمتر از ۲۰ میلیمتر در کوره ۹۰ دقیقه، غلظت عامل لیچینگ ۱۵۰ گرم بر لیتر، غلظت جامد ۲۰۰۰ گرم بر لیتر و زمان لیچینگ ۱۰۰ دقیقه در فرآیند ترموشیمی با هدف دستیابی به بیشترین راندمان کاهش سیلیس، تعیین شد. مدل پیشنهاد شده، مدول (Al₂O₃/SiO₂) بوکسیت پـر عیار شـده در شرایط بهینـه را ۲٫۹۲ پیش بینی کرد، در حالی که در آزمایشهای عملی با شرایط مشابه ۱۹۰ ±۶٫۹۶ به دست آمد که بیانگر ۹۵٪ کاهش سیلیس و افزایش مدول تا ۳ برابر با بازیـابی وزنی ۸۰٪ است.

كلمات كليدى: تأثير متقابل، فرآيند باير، سيليس زدايى، بوكسيت، ترموشيمى.