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Abstract 

Slope stability analysis is an enduring research topic in the engineering and academic sectors. Accurate 

prediction of the factor of safety (FOS) of slopes, their stability, and their performance is not an easy task. In 

this work, the adaptive neuro-fuzzy inference system (ANFIS) was utilized to build an estimation model for 

the prediction of FOS. Three ANFIS models were implemented including grid partitioning (GP), subtractive 

clustering method (SCM), and fuzzy c-means clustering method (FCM). Several important parameters such 

as cohesion coefficient, internal angle of friction, slope height, slope angle, and unit weight of slope material 

were utilized as the input parameters, while FOS was used as the output parameter. A comparison was made 

between these three models, and the results obtained showed the superiority of the ANFIS-SCM model. Also 

performance of the ANFIS-SCM model was compared with multiple linear regression (MLR). The results 

obtained demonstrated the effectiveness of the ANFIS-SCM model. 

 

Keywords: Slope Stability, Factor of Safety, ANFIS-Grid Partitioning, ANFIS-Subtractive Clustering 

Method, ANFIS-Fuzzy C-Means Clustering Method. 

1. Introduction 

Slope stability has been considered as one of the 

most significant topics to study for the 

geotechnical society over many years [1]. Slope 

failures are natural phenomena that constitute a 

serious natural hazard in many countries. They are 

responsible for hundreds of millions of dollars of 

damage to the public and private property every 

year. To prevent or mitigate the landslide damage, 

slope stability analyses and stabilization require 

an understanding and evaluation of the processes 

that govern the behavior of the slopes. The factor 

of safety (FOS) based on an appropriate 

geotechnical model as a stability index is required 

in order to evaluate the slope stability. Many 

variables are involved in the slope stability 

evaluation, and calculation of FOS requires 

physical data on the geologic materials, 

geometrical data and its shear-strength 

parameters, information on pore-water pressures, 

etc. Traditionally, the methods available to solve 

FOS of a given slope are classified into the 

categories including limit equilibrium method 

(LEM) [2-9], material point method (MPM) [1, 

10], finite element method (FEM) [11-14], 

boundary element method (BEM) [15], finite 

element limit analysis [16], finite difference 

method (FDM) [17], numerical limit analysis 

methods [18], coupled Markov chain (CMC) 

model [19], slope stability probability 

classification (SSPC) method [20], strength 

reduction finite element method (SRFEM) [21], 

numerical back analysis [22], and finite element 

method-based shear strength reduction (FEM-

SSR) [23]. 

Recently, soft computing approaches have been 

used successfully for modeling and classification. 

They are useful where the precise scientific tools 

are incapable of giving a low cost, analytic, and 

complete solution. The advantages of employing 

the soft computing approaches are their capability 

to tolerate imprecision, uncertainty, and partial 

truth to achieve tractability and robustness on 
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simulating human decision-making behavior with 

low cost. 

Furthermore, in the recent years, in the field of the 

stability of slope modeling, with the development 

of cheaper personal computers, the intelligence 

system approaches have been increasingly used in 

the stability of slope analysis such as slope 

stability prediction using fuzzy logic (FL) [24-26], 

finding the critical FOS in slope stability analysis 

using simple genetic algorithm (GA) [27-29], 

using ant colony optimization algorithm [30], 

using particle swarm optimization (PSO) 

algorithm [31], and stability of slope prediction 

using artificial neural networks (ANNs). ANNs 

have some limitations, as follow: 

 A major disadvantage of the ANN models 

is that, unlike other statistical models, they 

provide no information on the relative 

importance of the various parameters [32]. 

 In ANN, as the knowledge acquired 

during training is stored in an implicit 

manner, it is very difficult to come up with 

a reasonable interpretation of the overall 

structure of the network [33]. This lead to 

the term ‘‘black box’’, which many 

researchers use while referring to the 

ANN behavior. 

 In addition, ANN has some inherent 

drawbacks such as slow convergence 

speed, less generalizing performance, 

arriving at local minimum, and over-

fitting problems. 

In addition, the fuzzy set theory plays an 

important role in dealing with uncertainty when 

making decisions in engineering applications. 

Therefore, fuzzy sets have attracted a growing 

attention and interest in modern information 

technology, production technique, decision-

making, pattern recognition, diagnostics, data 

analysis, etc. 

Neuro-fuzzy systems are fuzzy systems, which 

use the ANN theory in order to determine their 

properties (fuzzy sets and fuzzy rules) by 

processing data samples. Neuro-fuzzy systems 

harness the power of the two paradigms FL and 

ANNs by utilizing the mathematical properties of 

ANNs in tuning rule-based fuzzy systems that 

approximate the way humans process information. 

A specific approach in the neuro-fuzzy 

development is the adaptive neuro-fuzzy inference 

system (ANFIS), which has shown significant 

results in modeling non-linear functions. In 

ANFIS, the membership function parameters are 

extracted from a data set that describes the system 

behavior. ANFIS learns features in the data set 

and adjusts the system parameters according to a 

given error criterion. 

In the following, the methodology of constructing 

the ANFIS model for prediction of FOS is 

presented. Three ANFIS models were 

implemented including grid partitioning (GP), 

subtractive clustering method (SCM), and fuzzy 

c-means clustering method (FCM). Several 

important parameters such as the cohesion 

coefficient, internal angle of friction, height of 

slope, slope angle, and unit weight of slope 

material were utilized as the input parameters, 

while FOS was the output parameter. The 

estimation abilities offered using the ANFIS 

models are presented using the field data in open 

source literatures. 

2. Applied methods 

2.1. Adaptive network-based fuzzy inference 

system 

A fuzzy inference system can model the 

qualitative aspects of human knowledge and 

reasoning processes without employing precise 

quantitative analyses. Neural networks (NNs) are 

information-processing programs inspired by 

mammalian brain processes. NNs are composed 

of a number of inter-connected processing 

elements analogous to neurons. The training 

algorithm inputs to the NNs a set of input data, 

and checks the NN output desired result. 

Combining NNs with fuzzy logic (FL) has been 

shown to emulate the human process of expert 

decision-making reasonably. In traditional NNs, 

only weight values change during learning, and 

thus the learning ability of NNs is combined with 

the inference mechanism of FL for a neuro-fuzzy 

decision-making system [34]. 

An adaptive NN is a network structure consisting 

of several nodes connected through directional 

links. Each node is characterized by a node 

function with fixed or adjustable parameters. 

Once the fuzzy inference system (FIS) is 

initialized, the NN algorithms can be utilized to 

determine the unknown parameters (premise and 

consequent parameters of the rules) minimizing 

the error measure, as conventionally defined for 

each variable of the system. Due to this 

optimization procedure, the system is called 

adaptive [35]. 

The architecture of ANFIS consists of five layers, 

and a brief introduction of the model is as follows. 

Layer 1: Each node i in this layer generates a 

membership grade of a linguistic label. For 

instance, the node function of the i
th
 node might 

be: 
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where x is the input to node i, and Ai is the 

linguistic label (small, large, …) associated with 

this node; and  , ,i i iV b  is the parameter set that 

changes the MF shapes. The parameters in this 

layer are referred to as the "premise parameters". 

Layer 2: Each node in this layer calculates the 

"firing strength" of each rule via multiplication: 

2 ( ). ( ) 1,2i i Ai BiQ W x y i     
(2) 

Layer 3: The i
th
 node of this layer calculates the 

ratio of the i
th
 rule's firing strength to the sum of 

all rules’ firing strengths: 
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For convenience, the outputs of this layer are 

called "normalized firing" strengths. 

Layer 4: Every node i in this layer is a node 

function: 

4 ( )i i i i i i iQ W f W p x q y r     
(4) 

where iW  is the output of layer 3. The parameters 

in this layer are referred to as "consequent 

parameters". 

Layer 5: The single node in this layer is a circle 

node labeled R that computes the "overall output" 

as the summation of all incoming signals: 

5  
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 (5) 

For a given data set, different ANFIS models can 

be constructed using different identification 

methods. GP, SCM, and FCM are three methods 

utilized in this study to identify the antecedent 

MFs. 

2.1.1. Grid partitioning of antecedent variables 

This approach proposes independent partitions of 

each antecedent variable [35]. The expert 

developing the model can define the MFs of all 

antecedent variables using prior knowledge and 

experience. They are designed to represent the 

meaning of the linguistic terms in a given context. 

However, for many systems, no specific 

knowledge is available on these partitions. In that 

case, the domains of the antecedent variables can 

simply be partitioned into a number of equally 

spaced and equally-shaped MFs. Thus in the GP 

approach, the domain of each antecedent variable 

is partitioned into equidistant and identically 

shaped MFs. Using the available input-output 

data, the MFparameters can be optimized. 

2.1.2. Subtractive clustering method 

SCM was introduced by Chiu [36], and its data 

points are considered as the candidates for center 

of clusters. The algorithm continues as follows: 

At first, a collection of n data points 

 1 2 3, , ,..., nX X X X in an M-dimensional space 

is considered. Since each data point is a candidate 

for cluster center, a density measure at data point

iX  is defined as: 

2
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where ar  is a positive constant. Therefore, a data 

point will have a high density value if it has many 

neighboring data points. The radius ar  defines a 

neighborhood; data points outside this radius 

contribute only slightly to the density measure. 

After the density measure of each data point has 

been calculated, the data point with the highest 

density measure is selected as the first cluster 

center. Let 1cX  be the point selected, and 1cD  be 

its density measure. Next, the density measure for 

each data point ix  is revised as follows: 
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where br  is a positive constant. After the density 

calculation for each data point is revised, the next 

cluster center 2cX  is selected, and all of the 

density calculations for data points are revised 

again. This process is repeated until a sufficient 

number of cluster centers is generated. 

SCM is an attractive approach to the synthesis of 

ANFIS networks, which estimates the cluster 

number and its cluster location automatically. In 

the subtractive clustering algorithm, each sample 
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point is seen as a potential cluster center. Using 

this approach, the computation time becomes 

linearly proportional to the data size but 

independent from the dimension problem under 

consideration [37, 38]. Using SCM, the cluster 

center of all data was found out. Then the 

numbers of subtractive centers were utilized to 

generate automatic MFs and rule base as well as 

the location of MF within dimensions. This 

method is a fast clustering method (unlike GP and 

FCM), designed for high-dimension problems 

with a moderate number of data points. This is 

because its computation grows linearly with the 

data dimension and as the square of the number of 

data points. 

2.1.3. Fuzzy c-means clustering method 

FCM is a data clustering algorithm introduced by 

Bezdek [39], in which each data point belongs to a 

cluster to a degree specified by a membership 

grade. FCM partitions a collection of n vectors, 

, 1,2,...,iX i n ,  into C fuzzy groups, and finds 

a cluster center in each group such that a cost 

function of dissimilarity measure is minimized. 

The stages of the FCM algorithm are, therefore, 

first described in brief. At first, the cluster centers 

, 1,2,...,ic i C  randomly from the n points 

 1 2 3, , ,..., nX X X X are chosen. Then the 

membership matrix U is computed using the 

following equation: 

2
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(8) 

where 
ij i jd c x   is the Euclidean distance 

between the i
th
 cluster center and the j

th
 data point, 

and m is the fuzziness index. Then the cost 

function is computed according to the following 

equation. The process is stopped if it is below a 

certain threshold. 
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In the final step, the new c fuzzy cluster centers 

, 1,2,...,ic i C  are computed using the 

following equation: 
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2.2. Multiple linear regression 

Multiple linear regression (MLR) is an extension 

of the regression analysis that incorporates 

additional independent variables in the predictive 

equation. Here, the model to be fitted is: 

1 2 2 ... n ny C C x C x e    
 

(11) 

where y is the dependent variable, x is the 

independent random variable, and e is a random 

error that is the amount of variation in y not 

accounted for by the linear relationship. Parameter 

C, standing for the regression coefficients, is 

unknown and is to be estimated. However, there is 

usually a substantial variation in the observed 

points around the fitted regression line. The 

deviation of a particular point from the regression 

line (its predicted value) is called the residual 

value. The smaller the variability of the residual 

values around the regression line, the better is the 

model prediction. 

3. Inputs and output data 

The main scope of this work was to implement the 

above methodology in the problem of slope 

stability prediction. In order to forecast FOS in the 

case of soil slopes, the factors that influence FOS 

have to be determined. The dataset applied in this 

study for determining the relationship among the 

set of input and output variables was gathered 

from open sources literature [40-44]. The input 

layer data consists of six input parameters in the 

case of circular failure. The parameters that were 

selected were related to the geotechnical 

properties and the geometry of each slope. More 

specifically, the parameters used for circular 

failure were unit weight (γ), cohesion (C), slope 

angle (β), height (H), angle of internal friction (φ), 

and pore pressure ratio (ru). The output layer 

composed of a single output parameter (FOS). 

The data set consisted of 67 case studies of the 

slopes analyzed for the circular critical failure 

mechanism. The original data covering the 67 

case studies are presented in Table 1. Also the 

descriptive statistics of all the data sets are shown 

in Table 2. 
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Table 1. Training and testing data sets used for constructing models (Sah et al. [40]
*
, Hoek and Bray [41]

**
, 

Hudson [42]
***

, Lin et al. [43]
****

, and Madzic [44]
*****

). 

Case 

No. 

Input parameters Output parameter 

Location ɣ 

(KN/m
3
) 

C 

(KPa) 
ρ(

o
) β(

o
) 

H 

(m) 
ru FOS 

1 18.68 26.34 15 35 8.23 0 1.11 
Congress street, open cut slope, 

Chicago, USA 

2 16.5 11.49 0 30 3.66 0 1 Brightlingsea slide UK 

3 18.84 14.36 25 20 30.5 0 1.875 Unknown 

4 18.84 57.46 20 20 30.5 0 2.045 Unknown 

5 28.44 29.42 35 35 100 0 1.78 
Case 1: open-pit iron ore mine, 

India 

6 28.44 39.23 38 35 100 0 1.99 
Case 2: open-pit iron ore mine, 

India 

7 20.6 16.28 26.5 30 40 0 1.25 
Open-pit chromite mine, Orissa, 

India 

8 14.8 0 17 20 50 0 1.13 Sarukuygi landslide, Japan 

9 14 11.97 26 30 88 0 1.02 
Case 1: open-pit iron ore mine, 

Goa, India 

10 25 120 45 53 120 0 1.3 
Mercoirol open-pit coal mine, 

France 

11 26 150.05 45 50 200 0 1.2 
Marquesade open-pit iron ore 

mine, Spain 

12 18.5 25 0 30 6 0 1.09 Unknown 

13 18.5 12 0 30 6 0 0.78 Unknown 

14 22.4 10 35 30 10 0 2 
Case 1: Highvale coal mine, 

Alberta, Canada 

15 21.4 10 30.34 30 20 0 1.7 
Case 2: Highvale coal mine, 

Alberta, Canada 

16 22 20 36 45 50 0 1.02 
Case 1: open-pit coal mine, 

Newcastle coalfield, Australia 

17 22 0 36 45 50 0 0.89 
Case 2: open-pit coal mine, 

Newcastle coalfield, Australia 

18 12 0 30 35 4 0 1.46 Unknown 

19 12 0 30 45 8 0 0.8 Unknown 

20 12 0 30 45 4 0 1.44 Unknown 

21 12 0 30 45 8 0 0.86 Unknown 

22 23.47 0 32 37 214 0 1.08 
Pima open-pit mine, Arizona, 

USA 

23 16 70 20 40 115 0 1.11 Case 1: Wyoming, USA 

24 20.41 33.52 11 16 10.67 0.35 1.4 Seven Sisters Landslide, UK 

25 19.63 11.97 20 22 12.19 0.405 1.35 Case 1: The Northolt slide, UK 

26 21.82 8.62 32 28 12.8 0.49 1.03 Selset Landslide, Yorkshire, UK 

27 20.41 33.52 11 16 45.72 0.2 1.28 Saskatchewan dam, Canada 

28 18.84 15.32 30 25 10.67 0.38 1.63 Case 2: The Northolt slide, UK 

29 18.84 0 20 20 7.62 0.45 1.05 Sudbury slide, UK 

30 21.43 0 20 20 61 0.5 1.03 Folkstone Warren slide, Kent, UK 

31 19.06 11.71 28 35 21 0.11 1.09 River bank side, Alberta, Canada 

32 18.84 14.36 25 20 30.5 0.45 1.11 Unknown 

33 21.51 6.94 30 31 76.81 0.38 1.01 Unknown 

34 14 11.97 26 30 88 0.45 0.625 
Case 2: open-pit iron ore mine, 

Goa, India 

35 18 24 30.15 45 20 0.12 1.12 Athens slope, Greece 

36 23 0 20 20 100 0.3 1.2 
Open-pit coal mine Allori 

coalfield, Italy 

37 22.4 100 45 45 15 0.25 1.8 
Case 1: open-pit coal mine, 

Alberta, Canada 
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Table 1. Continued. 

38 22.4 10 35 45 10 0.4 0.9 
Case 2: open-pit coal mine, 

Alberta, Canada 

39 20 20 36 45 50 0.25 0.96 
Case 3: open-pit coal mine, 

Newcastle coalfield, Australia 

40 20 20 36 45 50 0.5 0.83 
Case 4: open-pit coal mine, 

Newcastle coalfield, Australia 

41 20 0 36 45 50 0.25 0.79 
Case 5: open-pit coal mine, 

Newcastle coalfield, Australia 

42 20 0 36 45 50 0.5 0.67 
Case 6: open-pit coal mine, 

Newcastle coalfield, Australia 

43 22 0 40 33 8 0.35 1.45 
Case 1: Harbour slope, Newcastle, 

Australia 

44 24 0 40 33 8 0.3 1.58 
Case 2: Harbour slope, Newcastle, 

Australia 

45 20 0 24.5 20 8 0.35 1.37 
Case 3: Harbour slope, Newcastle, 

Australia 

46 18 5 30 20 8 0.3 2.05 
Case 4: Harbour slope, Newcastle, 

Australia 

47 21 20 40 40 12 0 1.84 Unknown 

48 21 45 25 49 12 0.3 1.53 Unknown 

49 21 30 35 40 12 0.4 1.49 Unknown 

50 21 35 28 40 12 0.5 1.43 Unknown 

51 20 10 29 34 6 0.3 1.34 Unknown 

52 20 40 30 30 15 0.3 1.84 Unknown 

53 18 45 25 25 14 0.3 2.09 Unknown 

54 19 30 35 35 11 0.2 2 Unknown 

55 20 40 40 40 10 0.2 2.31 Unknown 

56 18.85 24.8 21.3 29.2 37 0.5 1.07 Unknown 

57 18.85 10.34 21.3 34 37 0.3 1.29 Unknown 

58 18.8 30 10 25 50 0.1 1.4 Unknown 

59 18.8 25 10 25 50 0.2 1.18 Unknown 

60 18.8 20 10 25 50 0.3 0.97 Unknown 

61 19.1 10 10 25 50 0.4 0.65 Unknown 

62 18.8 30 20 30 50 0.1 1.46 Unknown 

63 18.8 25 20 30 50 0.2 1.21 Unknown 

64 18.8 20 20 30 50 0.3 1 Unknown 

65 19.1 10 20 30 50 0.4 0.65 Unknown 

66 22 20 22 20 180 0 1.12 Unknown 

67 22 20 22 20 180 0.1 0.99 Unknown 

∗ Cases 1–46.     ∗∗ Cases 47–55.  ∗∗∗ Cases 56–57.     ∗∗∗∗ Cases 58–65.  ∗∗∗∗∗ Cases 66–67. 

 
Table 2. Statistical description of dataset utilized for construction of models. 

Parameter Min. Max. Average 

Unit weight (γ) 12.00 28.44 19.71 

Cohesion (C) 0.00 150.05 22.25 

Angle of internal friction (φ) 0.00 45.00 26.23 

Slope angle (β) 16.00 53.00 32.47 

Height (H) 3.66 214.00 44.15 

Pore pressure ratio (ru) 0.00 0.50 0.20 

Factor of safety (FOS) 0.63 2.31 1.29 

4. Pre-processing of data and performance criteria 

In the data-driven system modeling methods, 

some pre-processing steps are commonly 

implemented prior to any calculation to eliminate 

any outliers, missing values or bad data. This step 

ensures that the raw data retrieved from the 

database is perfectly suitable for modeling. In 

order to soften the training procedure and improve 

the accuracy of prediction, all data samples are 

normalized to adapt to the interval [0, 1] 
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according to the following linear mapping 

function: 

min

max min

M

x x
x

x x





 (12) 

Where x is the original value from the dataset, xM 

is the mapped value, and xmin (xmax) denotes the 

minimum (maximum) raw input values, 

respectively. It is to be noted that the model 

outputs were remapped to their corresponding real 

values by the inverse mapping function ahead of 

calculating any performance criterion. 

Furthermore, to evaluate the performances of the 

ANFIS and MLR models, root-mean-squared-

error (RMSE), mean squared error (MSE), and 

squared correlation coefficient (R
2
) were chosen 

to be the measure of accuracy. N is the number of 

samples, and y and y' are the measured and 

predicted values, respectively. RMSE, MSE, and 

R
2
 could be defined, respectively, as follow: 
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5. Prediction of factor of safety using ANFIS 

models 

In this work, ANFIS was utilized to build a 

prediction model for the assessment of FOS from 

the available data using the MATLAB 

environment. Three ANFIS models were 

implemented, including grid partitioning (GP), 

subtractive clustering method (SCM), and fuzzy 

c-means clustering method (FCM). Figure 1 

shows the fuzzy architecture of ANFIS. A dataset 

that includes 67 data points was employed in the 

current study, while 53 data points (80%) were 

utilized for constructing the model, and the 

remaining data points (14 data points) were 

utilized for assessment of the degree of accuracy 

and robustness. 

 
Figure 1. Architecture of ANFIS based on GP, SCM, and FCM. 

 

The training and testing procedures of the three 

ANFIS models (GP, SCM, and FCM) were 

conducted from scratch for the five mentioned 

datasets. The RMSE, MSE, and R
2
 values 

obtained for training datasets indicate the 

capability of learning the structure of data 

samples, whereas the results of testing dataset 

reveal the generalization potential and the 

robustness of the system modeling methods. The 

characterizations of the ANFIS models were 

tabulated in Table 3. 

The number of rules obtained for the GP, SCM, 

and FCM models were 729, 37, and 25, 

respectively. MFs of the input parameters for 

different models are shown in Figures 2-4. 

 

Table 3. Characterizations of ANFIS models. 

ANFIS parameter ANFIS-GP ANFIS-SCM ANFIS-FCM 

MF type Gaussian Gaussian Gaussian 

Output MF Linear Linear Linear 

Number of nodes 1503 527 359 

Number of linear parameters 5103 259 175 

Number of nonlinear parameters 36 444 300 

Total number of parameters 5139 703 475 

Number of training data pairs 53 53 53 

Number of testing data pairs 14 14 14 

Number of fuzzy rules 729 37 25 
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Figure 2. MFs obtained by ANFIS-GP model. 
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Figure 3. MFs obtained by ANFIS-SCM model. 
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Figure 4. MFs obtained by ANFIS-FCM model. 
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A comparison between the results of the three 

models for testing datasets is shown in Table 4. 

As it can be observed in this table, the ANFIS-

SCM model with RMSE=0.205, MSE=0.042 and 

R
2
=0.852 for the testing datasets performs better 

than the other two models for prediction of FOS. 

Also the performance analysis of the three models 

for training datasets is shown in Table 5.  

The performance indices obtained in Tables 4 and 

5 indicate the high performance of the ANFIS-

SCM model that can be utilized successfully for 

the prediction of FOS. Furthermore, correlations 

between the measured and predicted values of 

FOS for testing and training phases are shown in 

Figures 5-7. 

Also a comparison between the predicted FOS 

values by the ANFIS models and the measured 

values for the ANFIS models for testing and 

training datasets is shown in Figures 8 and 9, 

respectively. As shown in these figures, the results 

of the ANFIS-SCM model, in comparison with 

the actual data, show a good precision of the 

ANFIS-SCM model. 

 
Table 4. A comparisons between results of three 

models for testing datasets. 

ANFIS model RMSE MSE R
2
 

ANFIS-GP 0.446 0.199 0.735 

ANFIS-SCM 0.205 0.042 0.852 

ANFIS-FCM 0.360 0.129 0.658 

 
Table 5. A comparisons between results of three 

models for training datasets. 

ANFIS model RMSE MSE R
2
 

ANFIS-GP 0.149 0.022 0.915 

ANFIS-SCM 0.109 0.012 0.952 

ANFIS-FCM 0.155 0.024 0.939 

 

 
(a)  (b) 

Figure 5. Correlation between measured and predicted FOS values by ANFIS-GP model: a) training data, and b) 

testing data. 

 
(a) 

 
(b) 

Figure 6. Correlation between measured and predicted FOS values by ANFIS-SCM model: a) training data, and 

b) testing data. 
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(a) 

 
(b) 

Figure 7. Correlation between measured and predicted FOS values by ANFIS-FCM model: a) training data, and 

b) testing data. 

 
Figure 8. Comparison between measured and predicted FOS by ANFIS models for testing datasets. 

 
Figure 9. Comparison between measured and predicted FOS by ANFIS models for training datasets. 
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6. Prediction of factor of safety using multiple 

linear regression 

In this work, a regression analysis was performed 

using the training and test data employed in the 

ANFIS model. FOS was considered as the 

dependent variable, and unit weight (γ), cohesion 

(C), slope angle (β), height (H), angle of internal 

friction (φ), and pore pressure ratio (ru) were 

considered as the independent variables. A 

computer-based package called SPSS (Statistical 

Package for the Social Sciences) was used to 

carry out the regression analysis. The estimated 

regression relationships for FOS are given as 

follow: 

 =1.422 0.026 0.006C

0.024 0.03 0.006H 0.939

  

   u

FOS

r



 
 (16) 

The statistical results of the model are given in 

Table 6. The FOS was estimated according to Eq. 

(16). Figure 10 shows the correlation between the 

measured FOS and those predicted using MLR 

with six inputs. 

Table 7 compares R2, MSE, and RMSE 

associated with the two methods for both the 

training and test data. In both states of using the 

training and testing data, the performance indices 

obtained in Table 7 indicate the high performance 

of the ANFIS-SCM model that can be used 

successfully for the prediction of FOS. Low 

correlation values between the model predictions 

and measured data using the MLR method 

describes its low capability in the prediction of 

FOS. 

 

  
Table 6. Statistical characteristics of multiple regression models. 

Model Method 
Independent 

variables 
Coefficient 

Standard 

error 

Standard 

error of 

estimate 

t value F ratio 
Sig. 

level 

Determinatio

n coefficient 

(R2) 

Eq. 16 Enter 

Constant 1.422 0.273 

0.249 

5.203 

14.969 

0.000 

0.661 

γ 0.026 0.013 2.060 0.045 

C 0.006 0.002 4.023 0.000 

φ 0.024 0.005 5.123 0.000 

β -0.030 0.006 -5.173 0.000 

H -0.006 0.001 -6.616 0.000 

ru -0.939 0.206 -4.554 0.000 

 

  
(a) (b) 

Figure 10. Comparison of predicted MLR and measured FOS: a) training data, and b) testing data. 

 
Table 7. Comparison of results (R

2
, MSE, RMSE) of two methods in training and testing data. 

Method 
R

2
 

(train data) 

R
2
 

(test data) 

MSE 

(train data) 

MSE 

(test data) 

RMSE 

(train data) 

RMSE 

(test data) 

ANFIS-SCM 0.952 0.852 0.012 0.042 0.109 0.205 

MLR 0.660 0.664 0.054 0.084 0.233 0.289 
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7. Conclusions 

The prediction of FOS for the circular slope 

failure assessment using the three ANFIS models 

(GP, SCM, and FCM) suggests that this might 

prove to be a useful alternative, with distinct 

advantages over the LEMs. The advantage of the 

ANFIS model in the analysis of slope stability 

problems over the traditional LEMs is that no 

assumption is required to be made in advance 

about the shape or location of the failure surface, 

slice side forces, and their directions. 

Furthermore, the following remarks can be 

concluded: 

 A comparison was made between the three 

ANFIS models GP, SCM, and FCM using 

67 data samples, and based upon the 

performance indices; RMSE, MSE and R
2
, 

ANFIS-SCM with RMSE=0.205, 

MSE=0.042 and R
2
=0.852 was selected as 

the best predictive model. 

 In comparison between the ANFIS-SCM 

and MLR models, the low correlation 

values between the model predictions and 

the measured data using the MLR method 

describes its low capability in the prediction 

of FOS. 

 Consequently, it can be concluded that 

ANFIS-SCM is a reliable system modeling 

technique for predicting FOS with highly 

acceptable degrees of accuracy and 

robustness. 

 This study shows that the ANFIS approach 

can be applied as a powerful tool for 

modeling some problems involved in rock 

mechanics engineering. 
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چکیده:

و تحلیرل   هرا  یروانیشر ی دقیق ضرری  ایمنری   نیب شیپامروزه یکی از مباحث مهندسین و مراکز علمی دانشگاهی تجزیه و تحلیل در زمینه پایداری شیروانی است. 

 هرا  یروانیشر ی ضرری  ایمنری   نر یب شیپر )انفیس( برای  تطبیقی فازی -عصبی استنتاج سیستمی نیست. به همین منظور در این تحقیق از ا سادهکار  ها آنپایداری 

ه ی بر ساز مدلبرای  فازی C-means کلاسترینگ -انفیس و تفریقی کلاسترینگ -انفیس شبکه، بندی پارتیشن -استفاده شده است. سه مدل انفیس شامل انفیس

 دهنرده  لیتشرک شامل: چسبندگی، زاویه اصطکاک داخلی، ارتفرا  شریروانی، زاویره شریروانی و وزن م صروه مراده        ها یورود ها مدلکار گرفته شده است. در این 

 -، نترای  نشران از برترری مردل انفریس     هرا  مردل در نظر گرفته شده است. در مقایسره برین    ها مدلدر حالی که ضری  ایمنی به عنوان خروجی  باشند یمشیروانی 

 همچنران  مقایسه شده اسرت کره نترای     رهیمتغبا رگرسیون خطی چند  تفریقی کلاسترینگ -همچنین در این تحقیق عملکرد انفیس. دهد یم تفریقی کلاسترینگ

 .دهد یم تفریقی کلاسترینگ -نشان از برتری عملکرد انفیس

 C-means کلاسرترینگ  -روش انفریس  ،تفریقری  کلاسرترینگ  -روش انفریس  شربکه،  بندی پارتیشن -پایداری شیروانی، ضری  ایمنی، انفیس کلماتکلیدی:

 .فازی

 

 

 

 


