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Abstract  

Achieving minimum cost and time in reservoir drilling requires evaluating the effects of the drilling 

parameters on the penetration rate and constructing a drilling rate estimator model. Several drilling rate 

models have been presented using the drilling parameters. Among these, the Bourgoyne and Young (BY) 

model is widely utilized in order to estimate the penetration rate. This model relates several drilling 

parameters to the penetration rate. It possesses eight unknown constants. Bourgoyne and Young have 

suggested the multiple regression analysis method in order to define these constants. Using multiple 

regressions leads to physically meaningless and out of range constants. In this work, the Cuckoo 

Optimization Algorithm (COA) is utilized to determine the BY model coefficients. To achieve this goal, the 

corresponding data for two wells are collected from one of the oilfields located in SW of Iran. The BY model 

constants are determined individually for two formations in one of the wells. Then the determined constants 

are used to estimate the drilling rate of penetration in the other well having the same formations. To compare 

the results obtained for COA, first, the two mathematical methods including progressive stochastic and 

multiple regressions were implemented. Comparison between these methods indicated that COA yields more 

accurate and reliable results with respect to the others. In the following, Particle Swarm Optimization (PSO) 

and Genetic Algorithm (GA) as meta-heuristic algorithms were applied on the field data in order to 

determine BY model’s coefficients. Comparison between these methods showed that the COA has fast 

convergence rate and estimation error less than others. 

 

Keywords: Bourgoyne and Young Model, Drilling Rate Estimation, Cuckoo Optimization, Drilling 

Parameters. 

1. Introduction 

The penetration rate is a key parameter in drilling 

optimization and drilling cost reduction. 

Numerous factors including the formation 

characteristics, weight on bit, drilling fluid 

properties, hydraulics, bit type, and rotary speed 

affect the drilling rate of penetration [1], and there 

are perhaps other undetected important factors 

involved up to the present time [2]. Presence of 

various factors complicates building the rate of 

penetration predictor model [3]. However, many 

efforts have been made for presenting simple rate 

of penetration estimator models. The Bourgoyne 

and Young (BY) model is a successful one for 

estimation of the drilling rate [4-6] and it has been 

widely used by the researchers [7]. In this model, 

there are some unknown constants that should be 

determined using the previous drilling reports in 

the understudied field. The accuracy of the BY 

model highly depends on the coefficient values; in 

other words, it depends on how these constants 

are computed. 

Bourgoyne and Young (1974) have suggested the 

multiple regression method to determine the 

unknown coefficients [8]. The results of the 

previous studies have shown that using the 

multiple regressions method for determining the 

model constants does not lead to reliable and 

physically meaningful results. Thus numerous 
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efforts have been made in order to utilize other 

techniques. The techniques used in this regard 

could be divided into two groups including the 

mathematical methods and meta-heuristic 

algorithms. Bahari and Baradaran Seyed (2007) 

have determined the coefficients of the BY model 

using the mathematical trust-region method [9]. 

Their results have demonstrated that the results 

obtained for the trust-region technique are more 

precise and reliable than those for the multiple 

regressions method. Bahari et al. (2008) have 

compared the results of genetic algorithm,  

trust-region, and multiple regressions in 

determining the coefficient of the BY model using 

the data obtained for several wells [5]. The results 

of their work have exhibited that the genetic 

algorithm outperforms other methods. Bahari and 

Bradran Seyed (2009) have optimized the drilling 

parameters using the BY model [10]. To achieve 

this, they determined the BY model constants 

using the genetic algorithm. Rahimzadeh et al. 

(2011) have implemented the progressive 

stochastic, trust-region, and regression methods to 

determine the model coefficients [11]. A 

comparison between the results of these methods 

have shown that the progressive stochastic method 

presents more accurate and reliable results with 

respect to other methods. Nascimento et al. (2015) 

applied the BY model to a Presalt case study [12]. 

They computed unknown coefficients of the BY 

model using regression method combined with 

normalization factor. Formighieri and Filho 

(2015) used Markov Chain Monte Carlo for 

determining BY model’s coefficients [13]. They 

did not compare their suggested method with 

other methods. However, their results were not 

satisfactory. 

In this paper, firstly, the BY drilling rate model is 

discussed in details, and then the corresponding 

constants of this model are determined using COA 

to estimate the penetration rate for two wells in an 

oilfield. In continuation, the proposed model is 

validated using the mathematical and  

meta-heuristic methods. 

2. BY drilling rate penetration model 

Bourgoyne and Young (1974) presented Eq. (1) as 

the drilling rate of the penetration model for the 

roller cone bits. 

(1) 1 2 3 4 5 6 7 8       ROP f f f f f f f f  

where ROP is the penetration rate in ft/h. Function 

   represents the effects of formation strength, bit 

type, mud type, and solid content, which are not 

considered in the drilling model. The 

corresponding unit is similar to that of ROP, and 

is called the formation drillability. Functions    

and    express the effect of formation compaction 

on the penetration rate. Function    denotes the 

effect of overbalance on the drilling rate. 

Functions    and    model the effects of weight on 

the bit and the rotary speed on the penetration 

rate, respectively. Function    expresses the effect 

of tooth wear and function    presents the effect 

of bit hydraulic on the penetration rate. These 

functions are defined as follow: 
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where: 

         = Bourgoyne and Young model constant 

coefficients 

D = True vertical depth (ft) 

   = Bit diameter (in) 

   = Jet impact force (lbf) 

   = Pore pressure gradient (lbm/gal) 

h = Fractional bit tooth wear 

   = Equivalent mud density (lbm/gal) 

N = Rotary speed (rpm) 

W = Weight on bit (1000 lbf) 

(
 

  
)
 
 = Threshold bit weight per inch of bit 

diameter at which the bit begins to drill 
The coefficients    to    depend on the local 

drilling condition and for each formation, should 

be individually determined using the previous 

drilling reports data [14]. Implementing the BY 

drilling rate model requires the existence of at 

least eight data points for each formation because 

of eight unknown constants. Based on several case 

studies in different area, Bourgoyne and Young 

presented the lower and upper limits of these eight 
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constants to achieve meaningful results. These 

ranges are given in Table 1. 

 
Table 1. Suggested ranges for constants by 

Bourgoyne and Young. 

Upper bound Lower bound Coefficient 

1.9 0.5    

0.0005 0.000001    

0.0009 0.000001    

0.0001 0.000001    

2 0.5    

1 0.4    

1.5 0.3    

0.6 0.3    

3. Studied wells 

The Studied wells were two vertical wells from 

one of the oilfields in SW Iran. These wells are 

named as wells A and B, which consist of 616 and 

210 data points, respectively. In this work, the 

constant coefficients of the BY model were 

determined using the data for well A. Then using 

the data for well B, the BY model together with 

the determined coefficients were validated. The 

range of the studied depth for both wells was in 

the ASMARI and PABDEH formations, and the 

diameter of the wells in this range was 8.5 in. 

Figure 1 depicts the corresponding diagram for 

the collected data from well A. The ranges of the 

parameters for both wells implemented in the BY 

model are given in Table 2. 

4. Determination of constant coefficients of BY 

model using COA 

COA was inspired by the life of a bird called 

cuckoo. This meta-heuristic algorithm is 

appropriate when dealing with non-linear 

continuous optimization problems. Like other 

evolutionary algorithms, COA begins with an 

initial population of the cuckoos. These initial 

cuckoos have some eggs to be laid in some host 

bird’s nests. Some of these eggs that are more 

similar to the host bird’s eggs have this 

opportunity to grow up and become a mature 

cuckoo. Host birds discern and kill the remaining 

eggs. The more the number of survived eggs, the 

more profit is gained. Thus the position at which 

more eggs are survived would be the term that 

COA is going to optimize. When cuckoos become 

mature, they leave their own society. At the time 

of egg laying, the young cuckoos immigrate to 

new environments, where there is more similarity 

of eggs to the host birds. After the cuckoo groups 

are formed in different areas, the society with the 

best profit value is selected as the target point for 

other cuckoos to immigrate [15]. All groups of 

cuckoos immigrate towards the current best area. 

Each group locates near the current best position. 

Egg-laying radius is computed regarding to the 

number of eggs each cuckoo lays, and the distance 

of cuckoos from the current best area. Then 

cuckoos start randomly-produced egg laying in 

the nest within the egg-laying radius area. This 

process continues to achieve the best area for  

egg-laying (area with maximum profit). This 

optimal area is where the maximum number of 

cuckoos is gathered. After some iterations, all the 

cuckoo population moves to the best habitat with 

maximum similarity of eggs to the host birds and 

also with the maximum food resource. This 

habitat will produce a maximum profit, and there 

will be the least egg losses in this best habitat. this 

process will continue until achieving the best 

position with the maximum profit and most 

cuckoo populated area [15]. Figure 2 illustrates 

the COA diagram. 

 

 
Figure 1. Diagrams of the parameters used for well A. 
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Table 2. Range of each input and output parameter used in BY model for studied wells. 

ROP 

(ft/h) 
   (lbf) 

h 

(%) 

N 

(rpm) 

W 
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Depth 

(ft) 

Statistical 

indicators 

F
o
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a
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n
 

W
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0.828 55.911 0.0 0.0 0.161 6.838 6.357 7887.139 Minimum 

A
S

M
A

R
I 

W
el

l 
A

 

12.121 124.979 0.650 126.325 6.687 7.624 6.401 8595.099 Mean 

29.085 278.983 1.850 222.750 18.996 7.752 6.450 9278.215 Maximum 

2.441 117.087 0.025 69.441 1.093 7.625 6.450 9281.496 Minimum 

P
A

B
D

E
H

 

12.087 141.403 2.436 156.531 7.195 7.625 6.478 9607.940 Mean 

25.970 266.207 3.545 176.097 13.435 7.626 6.509 9934.383 Maximum 

2.549 41.551 0.197 40.446 3.255 9.094 7.5072 8489.501 Minimum 

A
S

M
A

R
I 

W
el

l 
B

 

9.770 59.398 0.217 58.315 16.244 9.159 7.5076 8576.115 Mean 

26.853 71.120 0.237 69.974 22.558 9.254 7.5078 8662.73 Maximum 

5.106 193.968 0.312 192.341 18.460 9.016 7.5075 9924.541 Minimum 

P
A

B
D

E
H

 

8.316 198.196 0.320 196.595 24.155 9.324 7.5076 9957.021 Mean 

17.554 200.870 0.328 199.310 29.539 10.354 7.5078 9989.501 Maximum 

 

 
Figure 2. Flowchart of COA [15]. 
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In order to determine the optimum values of BY 

model coefficients, it is necessary to have the 

values for the problem variables formed as an 

array. In GA and PSO terminologies, these arrays 

are called “chromosome” and “particle position”, 

respectively. However, here, in COA it is called 

“habitat”. In an Nvar–dimensional optimization 

problem, a habitat is an array of        

dimension, representing the current living position 

of cuckoos. The array for computing the unknown 

constants of the BY model is defined as follows: 

(10) 1 2 3 4 5 6 7 8[ , , , , , , , ]habitat x x x x x x x x  

Each one of the variable values (            is a 

floating point number. The profit of a habitat is 

obtained by evaluation of the profit function. 

Since the BY model optimized constants are 

obtained when the BY model yields a minimum 

error, the objective function should be minimized. 

As it can be seen, COA is an algorithm that 

maximizes a profit function. To use COA in  

cost-minimizing problems, one could easily 

maximize the negative of the profit function. The 

objective function is considered as the Root Mean 

Square Error (RMSE). In this problem, RMSE is 

computed using the real values for the rate of 

penetration (       ) and the predicted rate of 

penetration (              for a total number of n 

data points in each formation (Eq. (11)): 

(11) 
2

1

1
RMSE ( )



  i i
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real predicted
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ROP ROP
n

 

If the number of cuckoos (their population) 

is    , to start the optimization algorithm, a 

candidate habitat matrix should be generated with 

the size of         . Then some  

randomly-produced numbers of eggs are devoted 

for each one of these initial cuckoo habitats. In 

nature, each cuckoo lays between 5 to 20 eggs. 

These values are used as the upper and lower 

limits of eggs, which are dedicated to each cuckoo 

at different iterations. The maximum distance 

within which cuckoos lay their eggs is called the 

Egg Laying Radius (ELR). ELR is determined 

using the lower limit (        and upper limit 

(     ) of variables, total number of eggs, and 

current number of cuckoo’s eggs (Eq. (12)). 

(12) 

'

(var var )

 

 
hi low

Number of current cuckoo s eggs
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where   is a number that handles the maximum 

ELR value. First its value is taken unity, and then 

it is reduced by 1% per each iteration. 

Convergence of COA increases by this technique.  

After the egg-laying process, 10% of all eggs with 

less profit values are killed. These eggs have no 

chance to grow. The rest of the eggs grow in host 

nests, hatch, and are fed by the host birds. When 

the young cuckoos grow and become mature, they 

live in their own area and society for a while. 

However, when the time for egg-laying 

approaches, they immigrate to the new and better 

habitats with more similarity of eggs to the host 

birds and also with more food for new youngsters. 

After the cuckoo groups are formed in different 

areas, the society with best profit value is selected 

as the target point for other cuckoos to immigrate. 

When the mature cuckoos live all over the 

environment, it is difficult to recognize which 

cuckoo belongs to which group. To solve this 

problem, the grouping of cuckoos is done by 

means of the K-means clustering method. The 

number of clusters was set as 4 based on the 

sensitivity analysis. Now that the cuckoo groups 

are constituted, their mean profit value is 

calculated. Then the maximum value for these 

mean profits would determine the goal group, and 

consequently, the group’s best habitat would be 

the new destination habitat for the immigrant 

cuckoos. 

When all the cuckoos immigrated toward the goal 

point and the new habitats were specified, each 

mature cuckoo is given some eggs. Then 

considering the number of eggs dedicated to each 

bird, an ELR is calculated for each cuckoo. 

Afterwards, the new egg-laying process restarts. 

Due to the fact that there is always an equilibrium 

in the birds’ population a number of      

controls and limits the maximum number of 

cuckoos in the environment. This balance is due 

to food limitations, being killed by predators and 

also inability to find the proper nest for eggs. 

In this work, the number of population, maximum 

number of population and maximum number of 

iterations were chosen using the sensitivity 

analysis. For this purpose, the optimal values for 

these parameters were selected based on two 

criteria including the accuracy and the process 

time. According to the results of the sensitivity 

study, the number of population, maximum 

number of population, and maximum number of 

iterations were set as 50, 50, and 20, respectively. 

5. Results and discussion 

The aforementioned constant coefficients of the 

BY model should be determined separately for 

each formation. Thus COA was run to determine 
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the constants in the BY model for each formation 

of well A, independently. To evaluate the 

performance of COA, multiple regression and 

progressive stochastic as mathematical methods 

and GA and PSO as evolutionary algorithms were 

applied to determine the unknown constants of 

BY drilling rate model. 

5.1. Comparison among COA, progressive 

stochastic and multiple regressions 

Table 3 shows the constant values obtained 

implementing the three methods on the data of 

well A. As it can be seen, in some cases, the 

values obtained using the multiple regressions are 

negative, and it may yield zero values for the 

penetration rate, which is logically meaningless. 

Figure 3 shows the calculated drilling rate using 

COA, progressive stochastic, and regression in the 

ASMARI and PABDEH formations for well A. 

As it can be seen, COA produced better results 

with respect to the other two methods. In the 

ASMARI formation, for depths less than 8400 ft, 

the BY model obtained using the progressive 

stochastic, analogous to the BY model obtained 

using the regression, the drilling penetration rate 

was underestimated. Depths more than 8400 ft, 

the progressive stochastic results were close to 

those of COA, whereas the created BY model 

using the regression method underestimated the 

drilling rate for depths more than 8700 ft. As it 

can be seen in Figure 3(b), the created BY models 

using the regression and progressive stochastic 

methods overestimated the penetration rate for 

depths less than 9400 ft, but for depths between 

9420 and 9600 ft, both methods estimated the 

drilling rate close to the real value. In both 

formations, the model built using COA precisely 

estimated the trend of the penetration rate 

changes. Table 4 depicts the RMSE obtained for 

each model built in estimating the drilling rate for 

each individual formation of well A. The 

corresponding error for COA was less than that 

for the other two methods in both formations. 

The computed constant coefficients in each 

formation of well A were used to estimate the 

penetration rate in the same formation of well B 

(Figure 4). As it can be seen in this Figure, the 

estimated drilling rate values using the built 

model by the regression method are highly 

scattered with respect to the two other methods. It 

yielded zero values for the predicted penetration 

rate in some data points of the ASMARI 

formation. The other methods (i.e. COA and 

progressive stochastic) yielded similar results. 

However, the estimated drilling rate values using 

the progressive stochastic method were slightly 

scattered. Table 5 shows the corresponding 

computed errors of the estimated penetration rate 

using the three different methods implemented for 

the well B formations. The model built using 

COA outperforms the other models. Coefficient of 

determination for COA is higher than progressive 

stochastic and regression technique (Table 6). 

 

 

 

Table 3. Coefficients values obtained for BY model using three different methods in well A. 

                        Method Formation 

0.336 0.310 0.722 0.725 0.0001 0.00016 0.00019 1.899 COA 

ASMARI 0.219 0.310 0.814 0.659 0.000095 0.00021 0.000001 1.719 Progressive stochastic 

1.378 0.0754 -2.639 0.0001 0.000075 -0.00401 0.0017 4.372 Regression 

0.514 0.610 0.815 0.824 0.0000435 0.000075 0.000179 1.792 COA 

PABDEH 0.490 0.560 0.951 0.801 0.000001 0.00029 0.000116 1.659 Progressive stochastic 

0.336 1.428 -4.351 0.513 -0.527 0.00156 -0.00192 3.453 Regression 

  

  
(b) (a) 

Figure 3. Comparison between estimated and real rate of penetration values in well A: (a) ASMARI and (b) 

PABDEH formations. 
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Table 4. RMSE obtained for three different methods in well A. 

PABDEH ASMARI Method 

2.786 4.185 COA 
3.803 5.130 Progressive stochastic 
4.737 8.159 Regression 

 

  
(b) (a) 

Figure 4. Comparison between estimated and real penetration rate values in well B: (a) ASMARI and (b) 

PABDEH formations. 

 

Table 5. Computed RMSE for three different models in well B. 

PABDEH ASMARI Method 

2.285 5.796 COA 
2.591 6.127 Progressive stochastic 
3.598 7.874 Regression 

 
Table 6. Computed coefficient of determinations for three methods in well A. 

PABDEH ASMARI  Method  

0.643 0.711 COA 
0.582 0.619 Progressive stochastic 
0.362 0.401 Regression 

 

5.2. Comparison among COA, PSO and GA in 

determining BY model’s coefficients 

In this comparison; the crossover and mutation 

coefficients in the GA were adopted as 0.6 and 

0.4, respectively. The mutation rate was 

considered as 0.3. The number of initial 

population in GA and PSO was 50 and maximum 

iteration of the algorithms was selected equal to 

300. These values were selected using trial and 

error method. 

The rate of error reduction for both formations of 

the training well is given in Figure 5. As one 

could see in Figure 5, COA has higher 

convergence rate than other two evolutionary 

algorithms. Furthermore, the estimation error of 

the COA in both formations of two wells is less 

than other meta-heuristic algorithms (Table 7). 

Even after 300 iterations, PSO and GA did not 

reach to the estimation error of COA. It indicates 

that the COA is more reliable and precise. As can 

be seen from Table 8, the determination 

coefficient of the COA is higher than other two 

algorithms. It means that more percent of ROP 

data is predictable using the COA. 

Figure 6 shows the estimated values of ROP 

through the studied ranges of depth in two wells. 

As can be seen, the predicted values of ROP using 

PSO is more accurate than GA. However, 

comparison between COA and PSO results 

indicates superiority of COA. Table 9 contains the 

calculated values of BY model’s coefficients 

using data of well A. 
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(b) (a) 

Figure 5. RMSE reduction rate for COA, PSO and GA in (a) ASMARI and (b) PABDEH formations of well A. 

 

Table 7. Computed RMSE for three different meta-heuristic algorithms in two wells.  

PABDEH ASMARI Method Well name 

2.786 4.185 COA 

Well A 2.792 4.197 PSO 

2.811 5.063 GA 

2.285 5.796 COA 

Well B 2.301 5.913 PSO 

2.383 6.492 GA 

 

Table 8. Computed coefficient of determinations for three evolutionary algorithms in well A. 

PABDEH ASMARI Method 

0.643 0.711 COA 

0.628 0.694 PSO 

0.610 0.678 GA 

 

  
(b) (a) 

  
(d) (c) 

Figure 6. Comparison between estimated and measured rate of penetration in well A ((a) ASMARI and (b) 

PABDEH) and well B ((c) ASMARI and (d) PABDEH). 
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Table 9. Coefficients values obtained for the BY model using three different meta-heuristic algorithms. 

                        Method Formation 

0.336 0.310 0.722 0.725 0.0001 0.00016 0.00019 1.899 COA 

ASMARI 0.341 0.310 0.722 0.725 0.0001 0.00018 0.00019 1.892 PSO 

0.349 0.309 0.722 0.723 0.000092 0.00017 0.00015 1.803 GA 

0.514 0.610 0.815 0.824 0.0000435 0.000075 0.000179 1.792 COA 

PABDEH 0.514 0.621 0.816 0.824 0.0000437 0.000072 0.000179 1.792 PSO 

0.513 0.627 0.831 0.822 0.0000441 0.000073 0.000178 1.763 GA 

 

6. Conclusions 

Inability of the multiple regression techniques in 

determining meaningful and reliable constant 

values in the BY drilling rate model requires 

application of other methods. In this work, 

therefore, the COA evolutionary algorithm was 

utilized for determining the unknown constants in 

the BY model. Also four other methods, i.e. 

progressive stochastic and multiple regressions as 

mathematical methods and GA and PSO as  

meta-heuristic algorithms were applied to validate 

the results of the proposed model. For this 

purpose, first the BY model constants were 

determined using the five methods for the two 

formations in one of the wells. Then the 

determined constants were incorporated for 

computing the penetration rate in the similar 

formations of the other well. The results obtained 

showed that the BY model was extremely 

sensitive to the values for these constant 

coefficients. Unlike the other four methods, the 

constant values determined using the regression 

method did not lay in the meaningful and 

recommended range. Consequently, it yielded 

dispersed values for the penetration rate in the test 

well, and even, in some cases, it estimated a zero 

value for the penetration rate. COA converged 

rapidly and reached the optimal value at the 8
th
 

iteration. While GA and PSO did not reach the 

optimum value at the 300
th
 iteration and they 

trapped in local minimum. 
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 چکیده:

پارامترهای حفاری روی نرخ نفوو  و سوا ت یود مودل تخمینگور نورخ حفواری اسوت           راتیتأثدستیابی به حداقل هزینه و زمان در حفاری مخزن نیازمند ارزیابی 

به صورت گسترده برای تخمین نرخ نفوو  بوه    (BY)ها، مدل بورگوین و یانگ با استفاده از پارامترهای حفاری ارائه شده است  از میان آن چندین مدل نرخ حفاری

چندگانوه   سازد و دارای هشت ضریب نامعین است  بورگوین و یانگ تحلیل رگرسویون کار برده شده است  این مدل چندین پارامتر حفاری را به نرخ نفو  مرتبط می

شوود  در ایون تحقیو ،    معنی و  وار  از محودوده ایون ضورایب موی     های بیرا برای تعیین این ضرایب پیشنهاد دادند  استفاده از رگرسیون چندگانه منجر به جواب

های مرتبط از دو چاه واقو  در یکوی از   دهبرای تعیین ضرایب مدل بورگوین و یانگ به کار برده شد  برای نیل به این هدف، دا (COA)سازی فا ته الگوریتم بهینه

ها تعیین شد  سوس  ایون ضورایب    های یکی از چاههای مدل بورگوین و یانگ به صورت مجزا برای هر کدام از سازندآوری شد  ثابتمیادین جنوب غربی ایران جم 

و  نوده یفزا، ابتدا، دو روش ریاضی شوامل روش تاوادفی   COAایسه نتایج محاسبه شده برای تخمین نرخ نفو  در سازندهای مشابه چاه دیگر استفاده شد  برای مق

هوای ریاضوی بر ووردار    از دقت و قابلیت اطمینان بواتتری نسوبت بوه روش    COAها نشان داد که نتایج رگرسیون چندگانه به کار برده شد  مقایسه بین این روش

هوای  ی به منظور تعیوین ضورایب مودل روی داده   ابتکار فراهای به عنوان الگوریتم (GA)و ژنتید  (PSO)سازی ازدحام  رات های بهینهاست  در ادامه، الگوریتم

از سرعت همگرایی باتتر و مقدار  طای تخمین کمتری نسوبت بوه دو روش دیگور بر ووردار      COAها نشان داد که میدان به کار برده شد  مقایسه بین این روش

 است 

 سازی فا ته، پارامترهای حفاری یانگ، تخمین نرخ حفاری، بهینهمدل بورگوین و  کلمات کلیدی:

 


