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Abstract 

Discrimination of the blind and dispersed mineralization deposits is a challenging problem in geochemical 

exploration. The frequency domain (FD) of the surface geochemical data can solve this important issue. This 

new exploratory information can be achieved using the interpretation of FD of geochemical data, which is 

impossible in spatial domain. In this research work, FD of the surface geochemical data is analyzed to 

decompose the complex geochemical patterns related to the mineral deposits. In order to identify the 

dispersed mineralization zone in the Chichakloo Pb–Zn deposit, a newly developed approach is proposed 

based on the coupling of two-dimensional Fourier transform (2DFT) and principal component analysis 

(PCA). The surface geochemical data is transferred to FD using 2DFT, and two low-pass filters are designed 

and performed on FD. Then the PCA method is employed on these frequency bands (FBs) separately. This 

proposed scenario desirably illustrates the relationship between the low frequencies in the surface 

geochemical distribution map (GDM) and the deep deposits. The informations obtained from the detailed 

exploration and the exploration drillings such as boreholes confirm the results obtained from this method. 

This new combined approach is a valuable data-processing tool and pattern-recognition technique in 

geochemical explorations. This approach is quite inexpensive compared to the traditional exploration 

methods. 

 

Keywords: Frequency Domain of Geochemical Data, Principal Component Analysis, Fourier 

Transformation, Dispersed Mineralization Zones, Pattern Recognition. 

1. Introduction 

Distinguishing the blind and dispersed 

mineralization zones is an important issue in 

geochemical exploration. In general, two main 

methods have been applied to identify the 

presence or absence of mineral deposits beneath 

the ground surface. One approach employs the 

type of ore deposit and the other one is based 

upon its geochemical haloes [1]. The geochemical 

haloes of mineral deposits are related to the 

enrichment and depletion of elements [2-4] and/or 

mineral alterations [5-7]. 

Grigorian has presented a zonality model in the 

spatial domain (SD) of geochemical data to detect 

the blind mineralization zones from the dispersed 

mineralization zones [8, 9]. The zonality method 

assumes a linear relationship between the vertical 

zonality coefficients and the depth of 

mineralization responses [10]. In addition to the 

zonality method, other methods have been applied 

to detect the hidden and dispersed ore deposits in 

SD of geochemical data based on the horizons of 

erosional surface [9, 11-14]. The variation in 

particular elements and their certain ratios in 

geochemical haloes of mineral deposits in SD can 

be used for vectoring toward the ore zones  

[15-17]. 

In addition to SD, the geochemical data can be 

interpreted in FD. The analysis of geochemical 

data in FD can provide new exploratory 

information that may not be exposed in SD  

[18-20]. Fourier transforms are widely used 

for many applications in engineering, science, and 

https://en.wikipedia.org/wiki/Discrete_Fourier_transform#Applications
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mathematics. Fourier transforms are obtained by 

decomposing a sequence of values into 

components of different frequencies [21]. 

The power spectrum-area fractal method has been 

applied for separation of anomaly and background 

in FD of geochemical data [22-32]. Zuo and 

Wang have reviewed the fractal/multi-fractal 

models of geochemical data in SD and FD [33]. 

Wang and Zuo have presented a Matlab-based 

program for processing the geochemical data by 

means of the fractal/multi-fractal method in SD 

and FD [34]. Shahi et al. have demonstrated that 

there is a relationship between the frequencies of 

GDM and the depth of mineral deposits [18-20]. 

The geochemical migration process causes 

different geochemical haloes in the surface based 

on the depth of deposit. The deep ore deposits 

create low concentrations, and the shallow ore 

bodies may have large concentrations in the 

surface [35].
 
These haloes of mineral deposits and 

enrichment and depletion of elements at different 

depths affect different frequency distributions of 

elements in the surface. The very low frequencies 

are related to the background values and deep 

mineral deposits [18-20]. Shahi et al. have 

demonstrated that depletion and enrichment of 

particular elements in geochemical haloes of 

mineral deposits create different varieties of 

frequency distribution maps (FDMs) in surface 

geochemical data [20]. In this research work, in 

order to identify the Pb– Zn blind mineral deposit, 

a combined approach based on FD of surface 

geochemical data and PCA method is proposed. 

2. Materials and methods 

2.1. Case study 

The Chichakloo area is located in the NW of Iran, 

SW of the city of Zanjan, 30 kilometers from 

Takab to the east (Figure 1). The studied area is 

located in the collision place of the two tectonic 

zones Alborz-Azerbaijan and Sanandaj-Sirjan. 

The oldest geological unit, aged Precambrian, 

includes mica and talc schist and outcrops in the 

south and west of the studied area. The second 

unit, aged Paleozoic, has been formed from gray- 

to white-colored dolomites that are occasionally 

brecciated. The brown dolomite is the oldest 

carbonate unit in the studied area. This unit 

contains chert bands, occasionally with silica 

veins and veinlets, which are increased toward the 

north in the studied area. This brown dolomite 

unit is overlain by grey to black dolomites of low 

to moderate thickness that are situated in 

immediate contact with the sand-breccia dolomite 

unit. This unit contains, as the host rock of lead 

and zinc ore deposit, a relatively high amount of 

fine white calamine in the middle and western 

parts of the studied area. One of the most 

important specifications of this unit is that it 

contains silica veins and veinlets and jasperoid 

bodies, and has an extensive spread in the western 

and north-western parts of the studied area. The 

youngest geological unit, aged Eocene, consists of 

sandstone and red-colored shale (Figure 2). Most 

of the faults in the area have a NS trend [36]. 

 

 
Figure 1. Chichakloo Pb-Zn mineralization area is located in NW of Iran [37]. 

https://en.wikipedia.org/wiki/Sequence
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The main controlling factors involved in the 

mineralization include the sand-breccia dolomite, 

the contact between dolomite and shale, and also 

the diagenetic processes in the lead and zinc 

mineralization of disseminated, laminated, and 

veinlet forms. Tectonic processes such as NS 

faults have a significant role in the re-placement 

of the metallic ores. Galena minerals re-grow 

inside the calcite and dolomite crystals, indicating 

the simultaneous occurrence of the metallic ore 

and host rock minerals. Sphalerite and cubic 

pyrite are also observed with galena in the ore 

minerals. Lead and zinc primary minerals in the 

ground surface and shallow depth due to 

weathering and supergene processes have been 

converted to secondary minerals such as 

smithsonite, calamine, and cerosite [36]. 

 

 
Figure 2. Geological map of studied area showing geological units, faults, parallel geophysical exploration 

stations, and grid net of geochemical sampling [36]. 

 

2.2. Fourier transform 

The Fourier series show us how to decompose any 

periodic function to a sum of sinusoids. The 

Fourier transform is the extension of this idea to 

non-periodic functions. The Fourier transform 

decomposes any function into a sum of sinusoidal 

basis functions. Each of these basis functions is a 

complex exponential of a different frequency.  

Re-writing sinus and cosines as complex 

exponentials makes it necessary for the Fourier 

coefficients to be complex-valued. The usual 

interpretation of this complex number is that it 

gives both the amplitude of the wave present in 

the function and the phase (or the initial angle) of 

the wave. The Fourier transform can measure the 

frequencies that are present in the original signal, 

and we can recombine these waves using an 

integral to reproduce the original function [38]. 

The Fourier method is the most powerful 

technique for signal analysis. It transforms the 

signal from time or spatial domain to FD in which 

many characteristics of the signal are revealed 

[26]. 

Fourier transformation is the mathematical 

procedure connecting S(x) and F(ω). S(x) is the 

1D SD signal, and F(ω) is called the Fourier 

transform of S(x) and the so-called FD 

representation. In general, F(ω) is a  

http://www.thefouriertransform.com/series/fourier.php
https://en.wikipedia.org/wiki/Complex_exponentials
https://en.wikipedia.org/wiki/Complex_exponentials
https://en.wikipedia.org/wiki/Amplitude
https://en.wikipedia.org/wiki/Phase_(waves)
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complex-valued function composed of 

harmonic frequencies, phases, and their 

amplitudes obtained from the Fourier expansion. 

If S(x) is specified, F(ω) may be computed, and 

vice versa. Here, the defining equations for 

completeness have simply been provided:  

F( ) ( )e






 
i xS x dx  (1) 

1
( ) ( )e

2






 
i xS x F d 
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In the above-mentioned equations, ω is 

the fundamental frequency. Equation 1 is the 

Fourier transform and equation 2 is 

the inverse Fourier transform. Figure 3 simply 

illustrates the 1D Fourier transform. In this figure, 

the 1D signal in SD has been decomposed into its 

deferent main frequencies using Fourier 

transform, and subsequently, the signal has been 

shown in FD based on the amplitude and phase 

[39]. Fourier analysis converts a signal from its 

original domain (often time or space) to a 

representation in the FD, and vice versa [40].  

 

 
Figure 3. Schematic process of Fourier transformation of time (spatial) domain to frequency domain [41]. 

  

2DFT is a straightforward extension of the 1D 

Fourier transform. 2DFT allows us to represent 

and interpret the spatial data such as the images in 

FD [42]. The SD responses can be considered as 

superimposed signals of different frequencies 

[28]. One of the equations used for conducting the 

Fourier transform has been presented by Dobrin 

and Savit [43]: 
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 (3) 

where f(x, y) is the signal in SD, and Kx and Ky 

are “wave numbers” with respect to the x and y 

axes, respectively. Wave number is the spatial 

counterpart of frequency, increasing 

proportionally to wavelengths as bellow: 

2 /x xK   and 2 /y yK  ,  

or 
2 22 (1/ 1/ ) x yK K   

(4) 

Therefore, a function f(x, y) in SD, which is 

surface GDM in this study, can be converted into 

F(Kx, Ky). It consists of the real and imaginary 

parts R(Kx, Ky) and I(Kx, Ky), respectively. The 

power spectrum is defined based on the following 

equation [44, 45]: 

2 2(K ,K ) (K ,K ) (K ,K ) x y x y x yE R I  (5) 

The processing of geoscience data in FD often 

involves operations such as filtering and reducing 

the noise from signal [46]. The filter function, 

G(Kx, Ky), can modify the functions R(Kx, Ky) 

and I(Kx, Ky) by multiplying so that some ranges 

of wave numbers can be eliminated and others 

enhanced. The conventional filters in physics, 

electrical engineering, and geophysics include 

low-pass, high-pass, band pass, and directional 

band pass filters [47]. A low-pass filter generally 

eliminates the signals with high frequencies, and a 

high-pass filter eliminates low frequencies. These 

filters may be performed on the Kx-Ky map only 

based on the wave number values without 

considering the power spectrum values [48]. 

https://en.wikipedia.org/wiki/Fourier_analysis
https://en.wikipedia.org/wiki/Frequency_domain
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2.3. Principal component analysis (PCA) 

PCA can reduce the dimensionality of a dataset 

consisting of a large number of interrelated 

variables [49]. PCA can maximize the variance of 

a linear combination of the variables, and shows 

the data in different dimensions. Suppose that X is 

a vector of p original variables. Usually the 

original variables in X are correlated, and the 

distribution of points is not oriented parallel to 

any of the axes represented by X1, X2, …, XP. 

PCA can find the directions of high variability of 

data as natural axes of the swarm of points. This is 

done by translating the origin data and rotating the 

axes. The new variables (principal components) 

will be uncorrelated after rotation [50]. The new 

variables obtained in the new coordinate system 

are uncorrelated, and the first PC contains the 

most variations in the original variables. PCA can 

find the few derived variables that represent most 

of the information given by variances and 

correlations or covariances. PCA is performed 

using the calculation of eigenvectors of the 

covariance matrix or correlation matrix on 

original variables. The p × p correlation matrix for 

p variables has p eigenvalues and p eigenvectors 

( Pa,...,a,a 21 ). If the k-th eigenvector is ak = (a1k, 

a2k,..., apk), then PCs Y1, Y2, … are calculated by: 

PPPPPP
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 (6) 

The Kth derived variable, YK, is the Kth PC [49].  

3. Results and discussion 

A geochemical investigation was performed in a 

detailed exploration stage. In the geochemical 

study stage, 292 litho-geochemical samples were 

collected, and these samples were analyzed using 

the ICP method in Amdel Laboratory in Australia 

for 39 elements in the studied area. A blank sheet 

of sample location and concentration of Pb and Zn 

in this area are shown in Figure 4. 

 

 
Figure 4. Blank sheet of sample location and concentration of Pb and Zn. 

 

After data processing, multi-elemental analyses 

were carried out using PCA to determine the 

attributes of mineralization and recognize the 

chemical behavior of the paragenesis elements 

accompanying the main elements (i.e. Pb and Zn). 

PCA is a multivariate statistical method for  

geo-information identification of geo-datasets 

[51]. In the PCA method, correlated variables 

with high dimensionality are transformed into 

several uncorrelated principal components (PCs) 

based on a covariance or correlation matrix [52]. 

The PCA method has been frequently applied for 

the analysis of geochemical and geoscience data 

[29, 47, 51, 53, 54]. In this work, PCA was 

performed on the litho-geochemical data in SD. 

The results obtained for PCA are shown in Table 

1. The first four components represent about 

77.5% of the total variance. The first PC (PC1) in 
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Table 1 can be attributed to the decomposition of 

syngenetic components. PC1 is related to 

geochemical background and syngenetic 

elements. In this factor, the high negative amounts 

of Ca and Mg are related to the dolomite host 

rock, while the high positive values for other 

elements are related to the sandstone unit. The 

high coefficients for the Zn, Pb, Au, Ag, As, Cu, 

Mo, Sb, Cd, and Tl elements seen in the second 

PC (PC2) indicate the paragenesis elements 

accompanying the Pb and Zn mineralization in the 

studied area. In order to determine the 

mineralization and paragenesis elements, the 

numerical value of 0.5 was considered as a 

criterion in the rotated component matrix obtained 

from the PCA method. The mineralization 

principal component scores versus the elements 

are delineated in Figure 5, and the mineralization 

and paragenesis elements including Zn, Pb, Au, 

Ag, As, Cu, Mo, Sb, Cd, and Tl were separated 

from the other elements. The mineralization and 

paragenesis elements in the surface geochemical 

data have a proper relationship together, which is 

recognizable using the PCA method. 
 

Table 1. Rotated component matrix obtained from PCA method–mineralization PC, and its elements have been 

highlighted (based on threshold of 0.5). 

  
Component 

1 2 3 4 

Au -.131 .764 .018 .035 

Cr .709 .139 .039 -.322 

Mn .395 .044 .735 .222 

Ni .760 .268 .308 .083 

Pb -.364 .816 -.144 .137 

Sr .062 -.302 .729 -.205 

Ba .805 .135 .263 .029 

Be .805 -.165 .087 -.298 

Ti .968 -.147 .052 .051 

Fe .822 .348 .177 .013 

Al .928 -.142 .158 .125 

Ca -.941 -.020 .065 .123 

Li .850 .115 .128 .112 

P .922 .006 .118 .074 

V .975 -.054 .035 .026 

Mg -.931 .083 -.135 .111 

K .951 -.111 .024 .038 

Na .825 -.202 .172 .044 

S .246 .276 .019 .646 

Zr .855 -.167 .141 .171 

Ag .009 .850 -.107 -.039 

As -.224 .875 -.116 .051 

Bi .432 .496 .077 -.038 

Co .825 .225 .343 .082 

Cu .306 .733 .118 .106 

Mo .259 .619 .116 -.435 

Sb -.042 .905 -.084 .072 

Zn -.337 .730 -.166 .087 

Sn .897 .069 -.062 .056 

W .715 .161 .101 -.230 

Cs .919 -.078 .077 .043 

Nb .952 -.141 .062 .009 

U .738 .291 .064 -.022 

Cd -.564 .553 -.194 .228 

Rb .959 -.116 .064 .055 

Th .961 -.131 .122 .078 

Y .758 -.133 .298 -.089 

Ce .915 -.091 .100 .074 

Tl .419 .645 .199 -.045 
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Figure 5. Mineralization and paragenesis elements and their scores in mineralization principal component 

(MPC). 

 

The SD geochemical data for 39 elements were 

transferred to FD using 2DFT. The Fourier 

transform is called the FD representation of the 

original GDM. It is a mathematical approach that 

allows GDM to be decomposed into a sum of sine 

waves with different frequencies, phases, and 

amplitudes. This technique involves treating 

GDM as a 2D signal and applying standard  

signal-processing techniques to it. The Fourier 

transform separately decomposed these maps for 

39 elements into different frequencies. The 

frequencies in FDM show the oscillations and 

variations in GDM of elements. The data in FD 

includes the wave numbers in the horizontal and 

vertical directions and their power spectrum 

values. GDM in SD and FDM in FD for Pb are 

shown in Figure 6. FDM obtained by Fourier 

transformation illustrates the high and low 

frequencies and distribution of power spectrum 

values in the studied area. In FD, we powered the 

spectrum values and wave numbers in the x and y 

directions instead of the elements of the 

geochemical map. High values of the power 

spectrum are mainly distributed around the center 

of the map corresponding to low frequencies. In 

general, the power spectrum values decrease, 

moving away from the center. The power 

spectrum contains no phase information from 

GDM as the original function. GDM of elements 

is a representation of a signal with perfect spatial 

resolution but no frequency information, while 

FDM of elements has perfect frequency resolution 

but no spatial information. The magnitude or 

power spectrum value of the Fourier transform at 

a point is how much the frequency content is 

there. 

The patterns for FDMs in the surface mineral 

deposits are different from those for the deep 

mineral deposits. Analyzing the behavior of 

mineralization elements in low frequency bands 

can be suitable for interpretation of the presence 

or absence of deep ore deposits. The power 

spectrum of frequencies in FDM of elements is 

important in analyzing their properties. 

The mineral deposits at different depths cause 

different GDMs in the surface. Therefore, the 

surface GDMs of mineralization elements include 

various frequencies in the surface. Interesting 

exploratory information can be achieved using the 

interpretation of frequency patterns in FDM of 

surface geochemical data. 

In some complicated geological environments, 

extraction of exploratory features in SD is 

impossible but these patterns can be clearly 

concluded in FD. Different exploratory patterns 

can be identified using the frequency attributes of 

elements. The high frequencies in surface GDM 

of mineralization elements are related to the 

surface deposit and geochemical noises. 

The blind and deep mineral deposits may create 

very weak and invisible geochemical effects in the 

surface GDM of elements, and their assays may 

be around the background values in the SD 

surface geochemical data. There is an inverse 

relationship between the depth of deposit and the 

frequencies of surface GDM. As the frequencies 

of surface GDM are reduced, the depth of 

mineralization is increased. The background 

patterns related to the regional geological 

processes and deep mineralization can create low 

frequencies in surface GDM. In the deep ore 

deposit, the paragenesis and mineralization 

https://en.wikipedia.org/wiki/Signal_(electrical_engineering)
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elements in the surface GDM have distinctive 

frequency patterns in low FBs. Therefore, PCA 

can be applied to low FBs to classify the low 

frequencies of elements in the background and 

deep deposits. 

Two filter functions based on the wave numbers 

and power spectrum values were designed (Table 

2). These low-pass filters were performed on FD 

of geochemical data for all elements. The Pb 

power spectrum maps for FB1 and FB2 obtained 

from Pb GDM and their filter functions are 

depicted in Figure 7. Therefore, these filters were 

used based upon the wave number values in the x 

and y directions. In order to survey the 

mineralization features and determine the 

elements related to mineralizing phase in the 

depth, the PCA method was separately performed 

on two low FBs. 

 

 
Figure 6. (a) Pb geochemical distribution map in SD (b) frequency distribution map in FD (Power-Spectrum (PS) 

map of Pb obtained by Fourier transformation). 
 

Table 2. Two designed filter functions based on wave numbers and power spectrum values. 

 Filter function 
Frequency 

content 
Eliminated frequencies 

Frequency band 

1 

x y

x y

1 k and k 0.01
G(k ,k )

o otherwise

 


 


 
Very low 

frequencies 

High and moderate 

frequencies 

Frequency band 

2 

x y

x y

1 k and k 0.005
G(k ,k )

o otherwise

 


 


 
Very low 

frequencies 

High and moderate 

frequencies 
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Figure 7. Power spectrum (PS) maps for FB1 and FB2 obtained from Pb GDM using 2DFT and designed filter 

functions. 

 

The low-pass filters preserve the low frequencies. 

The low frequencies are related to the low wave 

number values and low variability of GDM. The 

filter function, G(Kx, Ky), modifies the function 

E(Kx, Ky) so that some ranges of wave numbers 

are eliminated and the others are enhanced. The 

PCA method was employed on these different 

FBs separately, and the mineralization factors 

were evaluated. The PCA method was performed 

on different wave numbers and their power 

spectrum values for 39 elements. The results 

obtained are shown in Table 3. In order to 

discriminate the elements and determine the 

exploratory patterns, 0.5 was considered as an 

evaluation criterion in rotated component matrix. 

The geochemical data in these FBs consists of the 

largest power spectrum values and the lowest 

frequencies. 

PCA classifies the elements in these FBs into 2 

principal components (PCs) (Table 3). The 

elements Sb, Cu, Au, Sr, Mn, As, Ca, U, Pb, Mg, 

Y, Zn, Ag, Mo, S, Tl, Cr, Bi, Ba, Be, Cd, Fe, W, 

Co, Ce, V, P, Ni, Th, Li, Sn, Rb, Cs, Al, K, and Zr 

are effective elements in PC1. PC2 is related to 

the elements Ca, U, Mg, Mo, Y, Zn, Ag, Mo, S, 

Tl, Cr, Bi, Ba, Be, Cd, Fe, W, Co, Ce, V, P, Ni, 

Th, Li, Sn, Rb, Cs, Al, K, Ti, Nb, Na, and Zr. The 

mineralization elements (i.e. Pb and Zn) were not 

properly separated from the other elements. The 

scores of elements in PC1 for FB 1 and 2 are 

illustrated in Figure 8. The mineralization and 

paragenesis elements were not classified properly 

in these bands.The mineralization and background 

patterns are not distinguishable in these very low 

FBs. The frequency behavior of the paragenesis 

and mineralization elements is similar to the other 

elements (background pattern) in these FBs. 

Therefore, the frequency oscillations of Pb and Zn 

are similar to the frequency variations of 

background elements such as Ca and Mg. Hence, 

FDM of the elements was not affected by the deep 

deposit in this area. In this area, the paragenesis 

and mineralization elements in the surface GDM 

do not have a distinctive frequency pattern in low 

FBs, and FDMs are affected by the background 

that is related to the regional geological processes. 

The presented scenario indicates that there is a 

low probability about the presence of deep ore 

deposit in this area. The coefficients of PCs in 

rotated component matrix in the PCA method 

demonstrate that there is no frequency anomaly in 

FDM, which is related to the deep geochemical 

anomaly. These results reduce the importance and 

intensity of mineralization elements in the depth. 

The results obtained predict that there are  

non–mineralization zones in the depth. The results 

of the detailed exploration surveys and drilled 

borehole confirm these results. The distributions 

of Pb, Zn, and Fe concentrations in the borehole 

BH03 and the mineralized and non-mineralized 

zones are illustrated in Figures 9-11. There is a 

complete compliance between the results. There is 

a non-mineralized zone in the depths of 60 m up 

to 150 m based on the results of the drilled 

borehole. The geochemical anomaly in GDM is 

more affected by the surface and shallow 

mineralization zones in this area. The 

interpretation of FDM as a newly presented 

pattern recognition scenario can properly predict 

the importance of mineralization zones in the 

depth without exploratory drilling. 
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Table 3. Rotated component matrix in PCA method for FB 1, 2. 

 

FB1 
 

FB2 

1 2 1 2 

Au .877 .433 Au .884 .432 

Cr .740 .669 Cr .743 .668 

Mn .868 .490 Mn .871 .488 

Ni .597 .800 Ni .600 .800 

Pb .824 .495 Pb .839 .527 

Sr .878 .471 Sr .880 .471 

Ba .728 .676 Ba .735 .671 

Be .721 .676 Be .733 .665 

Ti .483 .875 Ti .480 .877 

Fe .718 .692 Fe .725 .687 

Al .521 .851 Al .521 .852 

Ca .859 .505 Ca .861 .505 

Li .556 .828 Li .557 .828 

P .607 .794 P .608 .794 

V .628 .777 V .630 .776 

Mg .833 .548 Mg .835 .548 

K .519 .854 K .519 .855 

Na .310 .923 Na .304 .933 

S .744 .638 S .750 .638 

Zr .506 .847 Zr .510 .859 

Ag .807 .529 Ag .825 .530 

As .848 .467 As .861 .456 

Bi .717 .664 Bi .738 .655 

Co .682 .728 Co .687 .726 

Cu .880 .458 Cu .888 .452 

Mo .750 .615 Mo .763 .623 

Sb .894 .419 Sb .909 .407 

Zn .831 .548 Zn .832 .551 

Sn .545 .837 Sn .546 .838 

W .689 .717 W .690 .722 

Cs .533 .844 Cs .533 .845 

Nb .477 .878 Nb .475 .880 

U .849 .522 U .852 .521 

Cd .696 .642 Cd .728 .637 

Rb .536 .843 Rb .537 .844 

Th .578 .815 Th .579 .815 

Y .830 .551 Y .833 .550 

Ce .656 .752 Ce .661 .748 

Tl .728 .626 Tl .745 .638 
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Figure 8. Scores of elements in PC1 for frequency bands 1 and 2. Mineralization and paragenesis elements have 

not been classified properly. 

 

 

Figure 9. Concentration of Zn versus depth in borehole BH03 and non- mineralized zones. 

 

 
Figure 10. Concentration of Pb versus depth in borehole BH03 and non- mineralized zones. 
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Figure 11. Concentration of Fe versus depth in borehole BH03 and non-mineralized zones. 

 

4. Conclusions 

The frequency domain of surface geochemical 

data can be obtained using 2DFT. This research 

work showed that there was an inverse 

relationship between the depth of ore deposit and 

the frequencies of surface GDM. The very low 

frequencies in FDM could be related to the 

background values and anomaly values created by 

very deep mineral deposits. Two low-pass filter 

functions were designed and applied to FDM of 

elements. The separated very low frequencies 

were analyzed using PCA. In this research work, 

new exploratory information was concluded using 

interpretation of FD that is not achievable in the 

spatial domain. These achievements are: 

1- This proposed method can distinguish the 

presence or absence of Pb-Zn mineral deposits in 

the depth before drilling borehole. 

2- The results obtained show that the Pb–Zn 

mineralization phase does not affect very low FBs 

in FDM that are related to deep ore deposit. FDMs 

of the paragenesis and mineralization elements are 

similar to the background and syngenetic elements 

in very low FBs. Therefore, the frequency 

oscillations of Pb and Zn are similar to the 

frequency behaviors of the background elements 

such as Ca and Mg. There is no mineralization 

phase in FDM of these FBs. 

3- The introduced approach shows that the 

probability of the presence of Pb– n deep ore 

deposit in this area is very low. The results of FD 

demonstrate that there are non-mineralization 

zones in the depth. This fact cannot be concluded 

properly using the spatial domain. These results 

were also not confirmed by the results of 

concentration and mineralization in the 

exploration drilled borehole. There is a  

non-mineralized zone in the depths of 60 m up to 

150 m based on the results of drilled borehole. 

4- The applied method shows that the 

geochemical anomaly in GDM is more affected 

by the surface and shallow mineralization zones in 

this area. 

Therefore, the presented method is an effective 

pattern recognition approach for decomposing 

mixed geochemical populations and identifying 

deep mineral deposits without exploratory 

drilling. 
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چکیده:

هاای ژئوشایمیایی    داده (FD)ی مهم در بخش ژئوشیمی اکتشافی است. حوزه فرکاان   ها چالشتمایز بین ذخایر کانی سازی پنهان و کانی سازی پراکنده یکی از 

هاای   فرکاان  داده  در حوزه مکان غیارممکن ولای باا اسات اده از ت سایر حاوزه      تواند این مشکل را حل کند. دستیابی به این اطلاعات جدید اکتشافی  سطحی می

هاای ژئوشایمیایی ماورد     ژئوشیمیایی قابل دستیابی است. در این تحقیق، به منظور تجزیه الگوهای پیچیده ژئوشیمیایی مرتبط با ذخایر معدنی، حوزه فرکان  داده

ی هاا  روشو، یک روش جدیاد بار اساار ترکیا      محدوده چیچکل تجزیه و تحلیل قرار گرفته است. به منظور شناسایی منطقه کانی سازی پراکنده سرب و روی در

های ژئوشیمیایی سطحی باا اسات اده از تبادیل فوریاه دو      پیشنهاد داده شده است. داده (PCA)ی اصلی ها مؤل هو روش تحلیل  (2DFT)تبدیل فوریه دو بعدی 

ی اصالی بار   هاا  مؤل اه زه فرکان  اعمال شده اسات. روش تحلیال   های حو ؛ سپ  دو فیلتر پایین گذر طراحی و بر روی دادهشود یمبعدی به حوزه فرکان  تبدیل 

ی پایین در نقشه توزیع ژئوشیمیایی ساطحی  ها فرکان . این روش پیشنهادی به طور مناسبی ارتباط بین ردیگ یمروی این باندهای فرکانسی به صورت مجزا انجام 

(GDM)  دیا تائ، نتایج حاصل از ایان روش را  ها گمانهی اکتشافی از قبیل ها یح ارافات ت صیلی و . اطلاعات به دست آمده از اکتشدهد یمو ذخایر عمیق را نشان 

ی هاا  روش. این روش ترکیبی جدید یک ابزار ارزشمند پردازش داده و یک روش تشخیص الگو در اکتشافات ژئوشایمیایی اسات. ایان روش در مقایساه باا      کنند یم

 است. تر ارزان کاملاًسنتی اکتشاف 

 سازی پراکنده، تشخیص الگو.تبدیل فوریه، منطقه کانیی اصلی، ها مؤل هحوزه فرکان  داده ژئوشیمیایی، تحلیل لیدی:کلماتک

 


