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Abstract

In order to catch up with reality, all the macro-decisions related to long-term mining production planning
must be made simultaneously and under uncertain conditions of determinant parameters. By taking
advantage of the chance-constrained programming, this paper presents a stochastic model to create an
optimal strategy for producing bimetallic deposit open-pit mines under certain and uncertain conditions. The
uncertainties of grade, price per product, and capacities of the various stages in the process of production of
the final product were considered. The results of solving the deterministic and stochastic models showed that
the stochastic model had a greater compatibility and performance than the other ones.
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1. Introduction

The existence of a good strategy in a production
process sometimes has such benefits that in the
case of its absence, the production organizations
active in the field of industries and mines might
deviate from the direction of healthy growth and
survival in a competitive environment. Often the
goal of a production plan and strategy in an
open-pit mine is to achieve the maximum net
present value of cash flows. In this regard,
production planning is one of the crucial steps in
the process of planning an open-pit mine [1, 2].
Therefore, the main tasks for mine planning are
collecting different quality and quantity data and
formulating the best possible strategy and
planning [3].

Devising a planning strategy for the production of
two products is among the most important
problems faced by mine designers in bimetallic
deposits. Instead of the conventional production
plans, new production strategies compatible with
the terms of such deposits are highly important. In
addition to the diversity and number of its extant
metals, problems in bimetallic deposits such as
uncertainty in grade are also significant. The

necessity and importance of a production strategy
determine the production planning purposes to
some extent. This strategy can be followed in
wide time frames from short-term to long-term.
Among the existing criteria and goals,
maximizing the economic value, providing a feed
with specified tonnage and potential grade,
delaying stripping in the early years of mining,
and minimizing deviations in the mine planning
purposes are highly significant [4]. Given that the
optimal production strategies are considered
among modern problems dependent on production
planning, and as little research work has been
done in this regard, this work addresses important
dependent problems, i.e. production planning and
cut-off grade that are closely related.

Two types of mathematical methods are used to
solve the problem of production planning:
deterministic and uncertainty-based methods. In
deterministic models, it is assumed that all inputs
have a fixed known value, although assumptions
are not always realistic. Methods based upon
uncertainty have been used since 1990 in order to
optimize the design and open-pit mine production
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planning. In these methods, the true value of some
data such as ore grade, product prices, and costs
of production can vary within a certain range [5].
The uncertainty methods include linear
programming methods based on uncertainties and
integer random number planning.

In relation to production planning, the research
works conducted by Gershon [5], Dagdelen and
Johnson [6], and Caccetta and Hill [7] have
provided models for mine production planning
based upon deterministic planning. These models
are less consistent than the uncertainty models,
which consider actual conditions. The works of
Abdollahisharif et al. [8], Ataei and Osanloo [9],
Asad and Topal [10], Gholamnejad [11], and
Bascetin and Nieto [12] have investigated cut-off
grade, which is closely related to the production
strategy. All decisions associated with production
planning and cut-off grade determination should
be adopted by considering the most effective
parameters under uncertainty conditions to catch
up with reality. However, uncertainties have not
been taken into account in any of them. In the
work of Dimitrakopoulos and Ramazan [13],
production planning has been optimized under
uncertainty. For information on similar works in
the areas of production planning and cut-off grade
in uncertainty, the paper of Dimitrakopoulos and
Goodfellow [14] can be cited.

In this research work, the optimal production
strategy is conducted under very important
uncertain parameters such as price, grade, and the
capacity of various parts of the production process
because, in reality, there is no possibility of
conditions occurring precisely in a certain form,
and the production process always faces
deterministic conditions. Thus it is necessary to
investigate the positive and negative effects of
these conditions on planning. This research work
indicates that the uncertainties in geological
conditions, production, and market should be
considered to have an optimal production strategy
in mines. Correspondingly, this work provides a
stochastic model to optimize the production
process of bimetallic deposits using chance
constrained programming planning. The most
obvious differences between this work and the

others include the attention given to the
production process of bimetallic deposits and the
simultaneous effects of stochastic parameters of
grade, product price, and the capacities of mine,
concentrator (processing) plant, and refinery.

2. Optimal model of bimetallic production
strategy

2.1. Expressing theoretical concepts of model
The process of producing metals from extracted
ores was considered according to Figure 1 in order
to present an optimal planning model for a
bimetallic deposits production strategy. With the
aim of maximizing the net present value, the
suggested model determines the metals produced,
the materials sent through different stages from
the mine to the processing plant, and finally, to
the refinery plant. In other words, the purpose of
the model is to optimize the process of producing
the final product while increasing the profitability
in sales and decreasing the executive costs.

The suggested model is based upon two
assumptions of certainty and uncertainty in the
key parameters of the problem. Uncertainty
caused by the variable conditions of the market
and the executive process of producing the
product is considered so that the model is
consistent with the real world conditions. First,
according to indicators, parameters, and decision
variables, the deterministic model is expressed.
Then to match the conditions of the problem with
reality, by considering the uncertainties in grade,
selling price, and capacity of each stage using
chance constrained programming [15], the
deterministic model is developed on the basis of
stochastic  programming.  Accordingly, the
assumption is the determination of stochastic
parameter distribution as normally distributed.
Such a model in the literature about stochastic
programming is called “chance-constrained
programming”. If different confidence levels are
defined for the constraints, it would be called
“singular chance-constrained programming”, and
in case a similar confidence level is considered for
a group of constraints, it is called “joint chance-
constraint programming” [16].
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Figure 1. Process and main stages of producing final product from mineral ore.
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2.2. Deterministic model

While  formulating the  problem, joint
consideration is given to the indices, parameters,
and decision variables for the deterministic and
uncertain parts of the problem, according to Table
1.

In order to model the problem process according
to Figure 1, first, the relationships among the
stages of this process are expressed as the existent
communication in the field of the rate of
transferred material and on the basis of the
recovery rate and cut-off grade, as in Equations 1-
3.

Xm, =W, xRM, xG Wt (1)

Xp,, =Xm, xRP, x(%Pi) Vi t @)
GP, :

Xr . =Xp; xRR; x( %Ri) Vit 3)

Equation 1 determines the rate of material
transferred from the mine to the processing plant
based on the extraction recovery stage and
average in-situ grade. Equation 2 expresses the

rate of concentrate sent from the processing plant
to the refinery sector based on the recovery of this
and the previous stages. Finally, Equation 3
calculates the rate of pure metal i'th based on the
two previous stages and materials received.
According to the equations above and the concept
of NPV, an objective function is expressed for the
maximization of the current net value according to
Equation 4 and by taking into account constraints
of the problem. This equation represents
maximization of profits or the difference of
income from selling pure metals and all different
stages and fixed costs during the investigation
period. It should be noted that the objective
function is expressed with attention to the three
relationships mentioned according to the original
variable of the problem, i.e. the rate of a pure
metal or the final product i'th in the period t'th. In
other words, if it is necessary to calculate Xm, and
Xpit, only the rate of pure metal i'th in the period
t'th(Xriy) should be obtained and inserted in
Equations 1-3.

Table 1. Indices, parameters, and decision variables for mathematical modeling.

Index

i: Index for products (metals); i = 1,2,...,M

t: Index for periods over production strategy; t=1,2,...,T

RM;: Mine stage recovery over period t

RP;: Processing stage recovery over period t
RR;y: Refinery stage recovery of metal i over period t

G : Average grade

GR;: Grade of metal i in refinery stage

GP;: Grade of metal i in processing stage

Wo: Ore deposit tonnage

QM: Annual capacity of mine (tonnes)
QP: Annual capacity of processing (tonnes)

Parameter

CM¢: Annual mining cost over period t
CP: Annual processing cost over period t

CR;«: Annual refining cost of metal i over period t
F: Annual fixed costs over period t
d;: Annual discount rate over period t

Pi Price of metal i over period t

QR;: Annual capacity of refinery for metal i (tonnes)

U;: Upper bound of price for metal i over period t
L;.: Lower bound of price for metal i over period t

Xmg: Amount of ore that can be sent from mine to processing plant over period t

Decision variable

Xpir: Amount of concentration that can be sent from processing plant to refinery over period t

Xriy: Amount of metal (final product) i that can be refined over period t
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Max (NPV ):ii

[(Pi,t _CRi,t)'Xri,t —-CR, 'Xpi,t -CM-Xm, -F

T (1+d,)

o [[xn ([P, ~CR,,JRR.RR, (GP, G) ]~ (CP, -G RP, GR,) -~ (CM, -GP, GR, ) |(R, RR, , GP, .@)’1}—5 )
22 (1+d,)
s.t.

Xm, <QM vt (%)
iXPm <QP WVt (6)
;lr” <QR, Vit ()
Xp,, <Xm, xRP, x(%Pi ) Vi t (8)
xn'[SXpileRRiytx(G%R) Vi t &)
Xm,, Xp; ., Xr, =0 Vit | (10)

In the deterministic model provided, Equation 5
expresses the constraints of the annual capacity of
the mine. This limitation ensures that the amount
of ore extracted each year of the mine’s life
cannot exceed the maximum capacity of the mine
in any given year. In Equation 6, the constraint of
the maximum rate of concentrate produced from a
total bimetallic in the processing sector that must
be sent to the refinement sector is formulated.
This constraint ensures that the total annual
produced bimetallic concentrate in the processing
sector cannot exceed the maximum annual
capacity of the processing plant. The constraint
mentioned in Equation 7 ensures that the annual
production of each of the final products (pure
metals) does not exceed the annual capacity of the
refined sector. Equations 8 and 9 are considered
based upon Equations 2 and 3 in order to maintain
the relationships among the capacity of different
stages of the production process, as shown in

Figure 1, in the model. Finally, the constraints of
the lowest value of decision variables or, in other
words, the minimum rate of any of the products of
the mine sectors, processing, and refinery, are
written in Equation 10.

2.3. Stochastic model

In order to achieve results close to reality, the
uncertainties in grade parameters of ore, price,
and capacity of the mine sectors of processing and
refinement of the problem in this work are
considered  based upon the  stochastic
chance-constrained programming approach and
according to Table 2.

According to the process of chance-constrained
programming and using the parameters in Table 2,
the objective function and constraints of the
stochastic model are formulated using Equations
11-20.

Table 2. Random parameters for stochastic mathematical modeling.

Parameter Description

G Mg Average grade o& : Grade variance @ : Confidence level for grade

oM Hay - Average mine O'éM : Variance of mine v Confiden.ce level ff)r mine
capacity capacity production capacity

op Hep * Average processing O'ép : Variance of processing p : Confidence level for processing
capacity capacity capacity

OR, Hqg, : Average refinery O'éRi : Variance of refinery @, : Confidence level for refinery
capacity capacity capacity

P.. Hp Average price for O-lgi,l . Variance of price for ilvt : Confidence level for price for

each metal each metal each metal
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Max E (NPV ) =
58 |1 ([ (e, ~CRL)(RRRR, 5P, )] -(CR ~§.RF§.C?R,)—(CM1 ‘GP,GR,)) |RP.RR, 6P, 6)*|-F, 1)
1+d,)
XM, < pigy +(Z,x0gy) Vt (12)
iXpi't Stp +(Z xop) Wt (13)
;ﬁ,t Sk, +(Z, xogg ) Vit (14)
%S%”Z”X%) v (15)
Xr,, =Xp;, xRR;, X(G%Ri) Vit (16)
Mo +(Z, xop )<U;, Vit (17)
te +(Z, xop )2l Vit (18)
Xmg, Xp; ¢, Xr, =20 Vit (19)

Equations 12-14, respectively, represent the
random constraints equal to the deterministic
equations 5-7 based upon uncertainties in the
mine’s capacity, processing, and refinery.
Equation 15 is used to express the deterministic
constraint of Equation 8 randomly. Due to the
lack of random parameters in the constraint of
Equation 9 in the deterministic model, the same
equation is repeated with no changes in Equation
16 of the stochastic model. Constraints 17 and 18
indicate the randomness of metal selling prices
and that this parameter should not exceed the
acceptable and permitted limit of the market.
Equation 19 is the replicate of Equation 10 in the
deterministic model.

3. Results and discussion

3.1. Studied data

In order to investigate the results and performance
of the presented models, the data of a case
example was used as in Table 3. The data is
related to an assumed bimetallic deposit that is
considered similar to the actual data in a
bimetallic deposit. Parameters related to the
capacity of the mine, processing, and refinery,
their recovery rates, discount rates, and fixed costs
per year for 18 years in a row are shown in this
table.

Table 4 shows the values for the parameters of
grade, capacity, and statistical coefficients related
to the refinery sector for the two desired metals.
Also the parameter values related to the grades,
capacities, and statistical coefficients related to
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the mine and processing sectors have been
brought for the assumed ore deposit in Table 5.

Table 4. Values related to different parameters and
coefficients of refinery sector for two metals.

Parameter i=1 i=2
GR; 0.99 0.92
GP; 0.65 0.80
QR; 3800 1400

Haor, 3800 1400
O, 417.80 277.87
a; 0.95 0.95

Table 5. Values related to parameters and
coefficients of the mine and processing sectors.

Parameter Value
G 0.54
Mg 0.54
Oz 0.21
0 0.95
QM 8000000
Howm 8000000
Com 1144183.4
4 0.95
QP 6800000
Hap 6800000
Oop 919096.5
B 0.95
Wo 140000000
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Table 3. Data related to an assumed mine for case study analysis.

t

Parameter 1 2 3 6 7 8 11 12 13 16 17 18
RM; 0.950 0.970 0.960 0.960 0.950 0.960 0.950 0.950 0.960 0.960 0.970 0.960
RP; 0.615 0.620 0.635 0.650 0.625 0.630 0.695 0.600 0.665 0.690 0.675 0.680
CP; 5.32 5.30 5.31 5.42 5.45 5.41 5.63 5.64 5.67 5.68 5.70 5.74
CM; 2.50 2.55 2.53 2.56 2.63 2.61 2.62 2.64 2.64 2.73 2.67 2.77
F 980000 980000 980000 980000 980000 980000 980000 980000 980000 980000 980000 980000
d, 6.9 7.1 7.1 7.9 7.9 8.1 8.4 8.3 8.1 8.4 8.5 7.9
i=1 0.955 0.965 0.925 0.960 0.935 0.970 0.980 0.980 0.975 0.980 0.985 0.985
RRu i=2 0.555 0.565 0.525 0.560 0.535 0.570 0.580 0.580 0.575 0.580 0.585 0.585
i=1 93 94 94 93 97 99 96 96 96 95 96 95
CRi i=2 276 279 277 280 277 272 275 276 279 278 279 277
i=1 1918 1911 1928 1961 1959 1953 1979 1971 1967 1951 1966 1975
Pu i=2 9116 9136 9122 9211 9232 9219 9207 9191 9241 9240 9221 9233
i=1 2598 2584 2521 2588 2562 2567 2599 2530 2577 2574 2576 2550
Vi i=2 12230 12244 12248 12804 12847 12839 12826 12830 12890 12900 12881 12887
i=1 1610 1605 1618 1677 1669 1659 1686 1677 1675 1666 1674 1681
b i=2 7208 7212 7209 7255 7289 7288 7285 7279 7302 7318 7303 7299
i=1 1918 1911 1928 1961 1959 1953 1979 1971 1967 1951 1966 1975
at i=2 9116 9136 9122 9211 9232 9219 9207 9191 9241 9240 9221 9233
i=1 308 306 310 284 290 294 293 294 292 285 292 294
fi i=2 1114 1108 1126 1593 1615 1620 1619 1639 1649 1660 1660 1654
i, i=1 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95
' i=2 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95
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3-5, both models were resolved and the output
results of the software processing were presented

3.2. Analysis of results

After entering the deterministic and stochastic

Table 6.

n

models presented into the Lingo 14.0 software and
placing the assumed deposit data shown in Tables

Table 6. Software output results obtained from processing models.
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As it could be seen in the results of the
deterministic and stochastic models shown in
Table 6, the three stages of mine, processing, and
refinery except for the first metal use their
maximum capacities during the mine's life. There
is some reason why the refinery unit did not work
with its maximum capacity in producing the first
metal. Based upon the assumed data in Table 3,
the profit (price minus cost) of the first metal is
approximately five times lower than the profit of
the second one. For this reason and based on the
objective function as the NPV maximization, first,
the processing unit capacity was assigned to
supply the material required for producing the
maximum possible amount of the second metal.
Then the rest of the processing capacity was
assigned to produce the first concentrate as a feed
to be sent for the refinery unit to produce the first
metal.

It can also be resulted that the rate of the materials
sent from the mine to the processing plant during
the mine’s life is the same. The annual rate of the
sum of the first and second products sent from the
processing unit to the refinery units during the
mine's life is the same, as well. In addition, the
rate of the second metal produced at the refinery
during the mine’s life is the same; whereas, no
specific trend can be seen in the results of the first
metal because these rates are associated with
frequent highs and lows.

Clearly, the results show that the rate of materials
sent annually from the mine to the processing unit
and also from the processing to the refinery units
during different years is higher in the stochastic
model than in the deterministic model.
Furthermore, the rate of metal produced annually
at the stochastic model is by far more than the

same value in the deterministic model. For this
reason, NPV in the stochastic model is more than
the deterministic model, and implies that the
provided stochastic model achieves more
favorable results than the deterministic model. In
this case, in order to reduce the costs caused by
over-production advances towards a relative
increase in the rate of sales, and as a result of the
increase in revenue from this process, this model
leads to an increase in NPV.

The curve of changes in the production of each
metal is provided per the various parameters.
Figures 2 and 3 show the trend of changes in
production of the first and second pure metals in
various years in the deterministic and stochastic
models. According to Figure 2, both the
deterministic and stochastic curves show an
uptrend in the production rates of the first metals
over time, in line with optimization of NPV and
covering extant costs. Interestingly, in the
production of the first metal based upon both the
deterministic and stochastic models, the maximum
and minimum production rates were seen in the
same Yyears. It is clear that in the deterministic
model, the maximum value of the first metal has
occurred in years 17 and 18 with a value of
2617.82 tons, and the minimum value of 2267.34
tons was achieved in year 3. For this metal in the
stochastic model, the maximum value of
production in years 17 and 18 occurred with a
value of 3014.49 tons, and the minimum with a
value of 2577.47 tons occurred in year 3. As
illustrated in Figure 3, both the deterministic and
stochastic curves for the second metal are
constant. In this case, the refinery unit produced
the second metal by its maximum capacity.

3100

== Deterministic model

Stochastic model

3000
2900
2800
2700
2600
2500
2400
2300
2200
2100

Xr 1t (tonnes)

2000

1 2 3 4 5 o6 17

8

t (year)

9 10 11 12 13 14 15 16 17 18

Figure 2. Change curve of first metal production per various years in deterministic and stochastic models.
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Figure 3. Change curve of second metal production per various years in deterministic and stochastic models.

The production rates determined in completing the
investigation of the process of producing the first
and second metals compared to the capacity of the
refinery stage are shown in Figures 4 and 5.
According to these figures, the stochastic model
attained much better results than the deterministic
model. Figure 4 shows that the values obtained for
the first metal in both the deterministic and
stochastic models were obviously less than the

refinery capacity, whereas, as shown in Figure 5,
the resulting values for the second metal in both
models were equal to the maximum refinery
capacity. Figure 4 shows that by increasing the
capacity of the refinery stage and due to the
randomness of this parameter and its ability to
increase in the stochastic chance-constrained
programming, the production rate is higher in the
stochastic model than in the deterministic model.

=== Deterministic model  ===t=== Stochastic model === QR1 = = =+ QRI1+(Zu1xeQR1)
L R e e e e e e e e e e e e
4100
_~ A e Yl
@ 3700
=
g
= 3300
2 2900 WL_._ ———
2500 ._\/W
2100
1 2 3 4 5 6 7 8 0 11 12 13 14 15 16 17 18
t (year)

Figure 4. Production rate of first metal and refinery capacity in deterministic and stochastic models.
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Figure 5. Production rate of second metal and refinery capacity in deterministic and stochastic models.

4. Conclusions

Since the parameters such as grade, price, and
capacity of the various parts of a metal production
process in bimetallic deposits are not fixed in real
and operational conditions, a stochastic model
was developed under uncertain conditions for
these parameters. First, a deterministic model was
presented to determine the mine production
strategy. Then given the uncertainty of the studied
parameters, the stochastic model of optimizing the
production strategy was presented. In the case
example, the two models mentioned above for an
assumed solved deposit were far better than the
deterministic model, and NPV resulting from this
model in the format of planning strategy for the
production of a bimetallic deposit was far better
than that of the deterministic models. The results
obtained also showed that by sending more
materials from the mine to the processing plant,
based on the stochastic programming model, the
rate of metal produced increased. It is indicative
of the fact that by considering the uncertainties,
the final metal produced at the refinery stage is
increased, and its values during different years are
significantly higher than the same values in the
deterministic model.
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