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Abstract 

In order to catch up with reality, all the macro-decisions related to long-term mining production planning 

must be made simultaneously and under uncertain conditions of determinant parameters. By taking 

advantage of the chance-constrained programming, this paper presents a stochastic model to create an 

optimal strategy for producing bimetallic deposit open-pit mines under certain and uncertain conditions. The 

uncertainties of grade, price per product, and capacities of the various stages in the process of production of 

the final product were considered. The results of solving the deterministic and stochastic models showed that 

the stochastic model had a greater compatibility and performance than the other ones. 
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1. Introduction 

The existence of a good strategy in a production 

process sometimes has such benefits that in the 

case of its absence, the production organizations 

active in the field of industries and mines might 

deviate from the direction of healthy growth and 

survival in a competitive environment. Often the 

goal of a production plan and strategy in an  

open-pit mine is to achieve the maximum net 

present value of cash flows. In this regard, 

production planning is one of the crucial steps in 

the process of planning an open-pit mine [1, 2]. 

Therefore, the main tasks for mine planning are 

collecting different quality and quantity data and 

formulating the best possible strategy and 

planning [3]. 

Devising a planning strategy for the production of 

two products is among the most important 

problems faced by mine designers in bimetallic 

deposits. Instead of the conventional production 

plans, new production strategies compatible with 

the terms of such deposits are highly important. In 

addition to the diversity and number of its extant 

metals, problems in bimetallic deposits such as 

uncertainty in grade are also significant. The 

necessity and importance of a production strategy 

determine the production planning purposes to 

some extent. This strategy can be followed in 

wide time frames from short-term to long-term. 

Among the existing criteria and goals, 

maximizing the economic value, providing a feed 

with specified tonnage and potential grade, 

delaying stripping in the early years of mining, 

and minimizing deviations in the mine planning 

purposes are highly significant [4]. Given that the 

optimal production strategies are considered 

among modern problems dependent on production 

planning, and as little research work has been 

done in this regard, this work addresses important 

dependent problems, i.e. production planning and 

cut-off grade that are closely related. 

Two types of mathematical methods are used to 

solve the problem of production planning: 

deterministic and uncertainty-based methods. In 

deterministic models, it is assumed that all inputs 

have a fixed known value, although assumptions 

are not always realistic. Methods based upon 

uncertainty have been used since 1990 in order to 

optimize the design and open-pit mine production 
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planning. In these methods, the true value of some 

data such as ore grade, product prices, and costs 

of production can vary within a certain range [5]. 

The uncertainty methods include linear 

programming methods based on uncertainties and 

integer random number planning. 

In relation to production planning, the research 

works conducted by Gershon [5], Dagdelen and 

Johnson [6], and Caccetta and Hill [7] have 

provided models for mine production planning 

based upon deterministic planning. These models 

are less consistent than the uncertainty models, 

which consider actual conditions. The works of 

Abdollahisharif et al. [8], Ataei and Osanloo [9], 

Asad and Topal [10], Gholamnejad [11], and 

Bascetin and Nieto [12] have investigated cut-off 

grade, which is closely related to the production 

strategy. All decisions associated with production 

planning and cut-off grade determination should 

be adopted by considering the most effective 

parameters under uncertainty conditions to catch 

up with reality. However, uncertainties have not 

been taken into account in any of them. In the 

work of Dimitrakopoulos and Ramazan [13], 

production planning has been optimized under 

uncertainty. For information on similar works in 

the areas of production planning and cut-off grade 

in uncertainty, the paper of Dimitrakopoulos and 

Goodfellow [14] can be cited. 

In this research work, the optimal production 

strategy is conducted under very important 

uncertain parameters such as price, grade, and the 

capacity of various parts of the production process 

because, in reality, there is no possibility of 

conditions occurring precisely in a certain form, 

and the production process always faces 

deterministic conditions. Thus it is necessary to 

investigate the positive and negative effects of 

these conditions on planning. This research work 

indicates that the uncertainties in geological 

conditions, production, and market should be 

considered to have an optimal production strategy 

in mines. Correspondingly, this work provides a 

stochastic model to optimize the production 

process of bimetallic deposits using chance 

constrained programming planning. The most 

obvious differences between this work and the 

others include the attention given to the 

production process of bimetallic deposits and the 

simultaneous effects of stochastic parameters of 

grade, product price, and the capacities of mine, 

concentrator (processing) plant, and refinery. 

2. Optimal model of bimetallic production 

strategy 

2.1. Expressing theoretical concepts of model 

The process of producing metals from extracted 

ores was considered according to Figure 1 in order 

to present an optimal planning model for a 

bimetallic deposits production strategy. With the 

aim of maximizing the net present value, the 

suggested model determines the metals produced, 

the materials sent through different stages from 

the mine to the processing plant, and finally, to 

the refinery plant. In other words, the purpose of 

the model is to optimize the process of producing 

the final product while increasing the profitability 

in sales and decreasing the executive costs. 

The suggested model is based upon two 

assumptions of certainty and uncertainty in the 

key parameters of the problem. Uncertainty 

caused by the variable conditions of the market 

and the executive process of producing the 

product is considered so that the model is 

consistent with the real world conditions. First, 

according to indicators, parameters, and decision 

variables, the deterministic model is expressed. 

Then to match the conditions of the problem with 

reality, by considering the uncertainties in grade, 

selling price, and capacity of each stage using 

chance constrained programming [15], the 

deterministic model is developed on the basis of 

stochastic programming. Accordingly, the 

assumption is the determination of stochastic 

parameter distribution as normally distributed. 

Such a model in the literature about stochastic 

programming is called “chance-constrained 

programming”. If different confidence levels are 

defined for the constraints, it would be called 

“singular chance-constrained programming”, and 

in case a similar confidence level is considered for 

a group of constraints, it is called “joint chance-

constraint programming” [16]. 

 

 

 
Figure 1. Process and main stages of producing final product from mineral ore. 
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2.2. Deterministic model 

While formulating the problem, joint 

consideration is given to the indices, parameters, 

and decision variables for the deterministic and 

uncertain parts of the problem, according to Table 

1. 

In order to model the problem process according 

to Figure 1, first, the relationships among the 

stages of this process are expressed as the existent 

communication in the field of the rate of 

transferred material and on the basis of the 

recovery rate and cut-off grade, as in Equations 1-

3. 

   t O tXm W RM G t  (1) 

 , ,   i t t t
i

GXp Xm RP i t
GP  (2) 

 , , , ,   i
i t i t i t

i

GP
Xr Xp RR i t

GR  (3) 

Equation 1 determines the rate of material 

transferred from the mine to the processing plant 

based on the extraction recovery stage and 

average in-situ grade. Equation 2 expresses the 

rate of concentrate sent from the processing plant 

to the refinery sector based on the recovery of this 

and the previous stages. Finally, Equation 3 

calculates the rate of pure metal i'th based on the 

two previous stages and materials received. 

According to the equations above and the concept 

of NPV, an objective function is expressed for the 

maximization of the current net value according to 

Equation 4 and by taking into account constraints 

of the problem. This equation represents 

maximization of profits or the difference of 

income from selling pure metals and all different 

stages and fixed costs during the investigation 

period. It should be noted that the objective 

function is expressed with attention to the three 

relationships mentioned according to the original 

variable of the problem, i.e. the rate of a pure 

metal or the final product i'th in the period t'th. In 

other words, if it is necessary to calculate Xmt and 

Xpi,t, only the rate of pure metal i'th in the period 

t'th(Xri,t) should be obtained and inserted in 

Equations 1-3. 

 
Table 1. Indices, parameters, and decision variables for mathematical modeling. 

Index 
i: Index for products (metals); i = 1,2,…,M 

t: Index for periods over production strategy; t = 1,2,…,T 

Parameter 

RMt: Mine stage recovery over period t 

RPt: Processing stage recovery over period t 

RRi,t: Refinery stage recovery of metal i over period t 

G : Average grade 

GRi: Grade of metal i in refinery stage 

GPi: Grade of metal i in processing stage 

WO: Ore deposit tonnage 

QM: Annual capacity of mine (tonnes) 

QP: Annual capacity of processing (tonnes) 

QRi: Annual capacity of refinery for metal i (tonnes) 

CMt: Annual mining cost over period t 

CPt: Annual processing cost over period t
 

CRi,t: Annual refining cost of metal i over period t
 

Ft: Annual fixed costs over period t 

dt: Annual discount rate over period t 

Pi,t: Price of metal i over period t 

Ui,t: Upper bound of price for metal i over period t 

Li,t: Lower bound of price for metal i over period t 

Decision variable 

Xmt: Amount of ore that can be sent from mine to processing plant over period t 

Xpi,t: Amount of concentration that can be sent from processing plant to refinery over period t 

Xri,t: Amount of metal (final product) i that can be refined over period t 
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 tXm QM t
 (5) 

,

1

 
M

i t

i

Xp QP t
 (6) 

, , i t iXr QR i t
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, ,, , 0 , t i t i tXm Xp Xr i t
 (10) 

In the deterministic model provided, Equation 5 

expresses the constraints of the annual capacity of 

the mine. This limitation ensures that the amount 

of ore extracted each year of the mine’s life 

cannot exceed the maximum capacity of the mine 

in any given year. In Equation 6, the constraint of 

the maximum rate of concentrate produced from a 

total bimetallic in the processing sector that must 

be sent to the refinement sector is formulated. 

This constraint ensures that the total annual 

produced bimetallic concentrate in the processing 

sector cannot exceed the maximum annual 

capacity of the processing plant. The constraint 

mentioned in Equation 7 ensures that the annual 

production of each of the final products (pure 

metals) does not exceed the annual capacity of the 

refined sector. Equations 8 and 9 are considered 

based upon Equations 2 and 3 in order to maintain 

the relationships among the capacity of different 

stages of the production process, as shown in 

Figure 1, in the model. Finally, the constraints of 

the lowest value of decision variables or, in other 

words, the minimum rate of any of the products of 

the mine sectors, processing, and refinery, are 

written in Equation 10. 

2.3. Stochastic model 

In order to achieve results close to reality, the 

uncertainties in grade parameters of ore, price, 

and capacity of the mine sectors of processing and 

refinement of the problem in this work are 

considered based upon the stochastic  

chance-constrained programming approach and 

according to Table 2. 

According to the process of chance-constrained 

programming and using the parameters in Table 2, 

the objective function and constraints of the 

stochastic model are formulated using Equations 

11-20. 

 

 
Table 2. Random parameters for stochastic mathematical modeling. 

Parameter Description 

G G
 : Average grade 2

G
 : Grade variance  : Confidence level for grade 

QM 
QM : Average mine 

capacity 

2

QM : Variance of mine 

capacity 

 : Confidence level for mine 

production capacity 

QP 
QP : Average processing 

capacity 

2

QP : Variance of processing 

capacity 

 : Confidence level for processing 

capacity 

QRi iQR : Average refinery 

capacity 

2

iQR : Variance of refinery 

capacity 

i : Confidence level for refinery 

capacity 

Pi,t
 

,i tP : Average price for 

each metal 

,

2

i tP : Variance of price for 

each metal 

,i t : Confidence level for price for 

each metal 
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Equations 12-14, respectively, represent the 

random constraints equal to the deterministic 

equations 5-7 based upon uncertainties in the 

mine’s capacity, processing, and refinery. 

Equation 15 is used to express the deterministic 

constraint of Equation 8 randomly. Due to the 

lack of random parameters in the constraint of 

Equation 9 in the deterministic model, the same 

equation is repeated with no changes in Equation 

16 of the stochastic model. Constraints 17 and 18 

indicate the randomness of metal selling prices 

and that this parameter should not exceed the 

acceptable and permitted limit of the market. 

Equation 19 is the replicate of Equation 10 in the 

deterministic model. 

3. Results and discussion 

3.1. Studied data 

In order to investigate the results and performance 

of the presented models, the data of a case 

example was used as in Table 3. The data is 

related to an assumed bimetallic deposit that is 

considered similar to the actual data in a 

bimetallic deposit. Parameters related to the 

capacity of the mine, processing, and refinery, 

their recovery rates, discount rates, and fixed costs 

per year for 18 years in a row are shown in this 

table. 

Table 4 shows the values for the parameters of 

grade, capacity, and statistical coefficients related 

to the refinery sector for the two desired metals. 

Also the parameter values related to the grades, 

capacities, and statistical coefficients related to 

the mine and processing sectors have been 

brought for the assumed ore deposit in Table 5. 
 

Table 4. Values related to different parameters and 

coefficients of refinery sector for two metals. 

i = 2 i = 1 Parameter 
0.92 0.99 GRi 
0.80 0.65 GPi 
1400 3800 QRi 

1400 3800 
iQR 

277.87 417.80 
iQR 

0.95 0.95 i 
 

Table 5. Values related to parameters and 

coefficients of the mine and processing sectors. 

Value Parameter 

0.54 G 

0.54 
G

 

0.21 
G

 

0.95  

8000000 QM 

8000000 QM 

1144183.4 QM 

0.95  

6800000 QP 

6800000 QP 

919096.5 QP 

0.95  

140000000 WO 
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Table 3. Data related to an assumed mine for case study analysis. 

18 17 16 … 13 12 11 … 8 7 6 … 3 2 1 
t 

Parameter 

0.960 0.970 0.960 … 0.960 0.950 0.950 … 0.960 0.950 0.960 … 0.960 0.970 0.950 RMt 

0.680 0.675 0.690 … 0.665 0.600 0.695 … 0.630 0.625 0.650 … 0.635 0.620 0.615 RPt 

5.74 5.70 5.68 … 5.67 5.64 5.63 … 5.41 5.45 5.42 … 5.31 5.30 5.32 CPt 

2.77 2.67 2.73 … 2.64 2.64 2.62 … 2.61 2.63 2.56 … 2.53 2.55 2.50 CMt 

980000 980000 980000 … 980000 980000 980000 … 980000 980000 980000 … 980000 980000 980000 Ft 

7.9 8.5 8.4 … 8.1 8.3 8.4 … 8.1 7.9 7.9 … 7.1 7.1 6.9 dt 

0.985 0.985 0.980 … 0.975 0.980 0.980 … 0.970 0.935 0.960 … 0.925 0.965 0.955 i = 1 
RRi,t 

0.585 0.585 0.580 … 0.575 0.580 0.580 … 0.570 0.535 0.560 … 0.525 0.565 0.555 i = 2 

95 96 95 … 96 96 96 … 99 97 93 … 94 94 93 i = 1 
CRi,t 

277 279 278 … 279 276 275 … 272 277 280 … 277 279 276 i = 2 

1975 1966 1951 … 1967 1971 1979 … 1953 1959 1961 … 1928 1911 1918 i = 1 
Pi,t 

9233 9221 9240 … 9241 9191 9207 … 9219 9232 9211 … 9122 9136 9116 i = 2 

2550 2576 2574 … 2577 2530 2599 … 2567 2562 2588 … 2521 2584 2598 i = 1 
Ui,t 

12887 12881 12900 … 12890 12830 12826 … 12839 12847 12804 … 12248 12244 12230 i = 2 

1681 1674 1666 … 1675 1677 1686 … 1659 1669 1677 … 1618 1605 1610 i = 1 
Li,t 

7299 7303 7318 … 7302 7279 7285 … 7288 7289 7255 … 7209 7212 7208 i = 2 

1975 1966 1951 … 1967 1971 1979 … 1953 1959 1961 … 1928 1911 1918 i = 1 

,i tP  
9233 9221 9240 … 9241 9191 9207 … 9219 9232 9211 … 9122 9136 9116 i = 2 

294 292 285 … 292 294 293 … 294 290 284 … 310 306 308 i = 1 

,i tP  
1654 1660 1660 … 1649 1639 1619 … 1620 1615 1593 … 1126 1108 1114 i = 2 

0.95 0.95 0.95 … 0.95 0.95 0.95 … 0.95 0.95 0.95 … 0.95 0.95 0.95 i = 1 
,i t  

0.95 0.95 0.95 … 0.95 0.95 0.95 … 0.95 0.95 0.95 … 0.95 0.95 0.95 i = 2 
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3.2. Analysis of results 

After entering the deterministic and stochastic 

models presented into the Lingo 14.0 software and 

placing the assumed deposit data shown in Tables 

3-5, both models were resolved and the output 

results of the software processing were presented 

in Table 6. 

 
Table 6. Software output results obtained from processing models. 

N
P

V
 

1
8
 

1
7
 

1
6
 

1
5
 

1
4
 

1
3
 

1
2
 

1
1
 

1
0
 

9
 

8
 

7
 

6
 

5
 

4
 

3
 

2
 

1
 

t 

Decision variable 

3
0
7
7

2
1
7

0
0
 

8
0
0
0

0
0
0
 

8
0
0
0

0
0
0
 

8
0
0
0

0
0
0
 

8
0
0
0

0
0
0
 

8
0
0
0

0
0
0
 

8
0
0
0

0
0
0
 

8
0
0
0

0
0
0
 

8
0
0
0

0
0
0
 

8
0
0
0

0
0
0
 

8
0
0
0

0
0
0
 

8
0
0
0

0
0
0
 

8
0
0
0

0
0
0
 

8
0
0
0

0
0
0
 

8
0
0
0

0
0
0
 

8
0
0
0

0
0
0
 

8
0
0
0

0
0
0
 

8
0
0
0

0
0
0
 

8
0
0
0

0
0
0
 

X
m

t
 

D
e
te

r
m

in
is

ti
c
 m

o
d

e
l 

4
0
4
7

8
6
3
 

4
0
4
7

8
6
3
 

4
0
2
4

1
3
8
 

4
0
2
4

1
3
8
 

3
9
7
5

4
3
9
 

4
0
0
0

0
0
0
 

3
9
8
7

6
9
2
 

4
0
2
4

1
3
8
 

4
0
0
0

0
0
0
 

4
0
2
4

1
3
8
 

3
9
7
5

4
3
9
 

3
7
9
0

6
5
4
 

3
9
2
5

0
0
0
 

4
0
0
0

0
0
0
 

3
9
7
5

4
3
9
 

3
7
3
3

3
3
3
 

3
9
5
0

4
4
2
 

3
8
9
9

0
9
9
 

i=
1
 

X
p

i,
t

 

2
7
5
2

1
3
7
 

2
7
5
2

1
3
7
 

2
7
7
5

8
6
2
 

2
7
7
5

8
6
2
 

2
8
2
4

5
6
1
 

2
8
0
0

0
0
0
 

2
7
7
5

8
6
2
 

2
7
7
5

8
6
2
 

2
8
0
0

0
0
0
 

2
7
7
5

8
6
2
 

2
8
2
4

5
6
1
 

3
0
0
9

3
4
6
 

2
8
7
5

0
0
0
 

2
8
0
0

0
0
0
 

2
8
2
4

5
6
1
 

3
0
6
6

6
6
7
 

2
8
4
9

5
5
8
 

2
9
0
0

9
0
1
 

i=
2
 

2
6
1
7

.8
2
3
 

2
6
1
7

.8
2
3
 

2
5
8
9

.2
6
9
 

2
5
8
9

.2
6
9
 

2
5
3
1

.8
3
2
 

2
5
6
0

.6
0
6
 

2
5
6
5

.8
1
8
 

2
5
8
9

.2
6
9
 

2
5
6
0

.6
0
6
 

2
5
8
9

.2
6
9
 

2
5
3
1

.8
3
2
 

2
3
2
7

.0
4
0
 

2
4
7
3

.9
3
9
 

2
5
6
0

.6
0
6
 

2
5
3
1

.8
3
2
 

2
2
6
7

.3
4
0
 

2
5
0
2

.9
4
4
 

2
4
4
4

.8
1
4
 

i=
1
 

X
r

i,
t

 

1
4
0
0
 

1
4
0
0
 

1
4
0
0
 

1
4
0
0
 

1
4
0
0
 

1
4
0
0
 

1
4
0
0
 

1
4
0
0
 

1
4
0
0
 

1
4
0
0
 

1
4
0
0
 

1
4
0
0
 

1
4
0
0
 

1
4
0
0
 

1
4
0
0
 

1
4
0
0
 

1
4
0
0
 

1
4
0
0
 

i=
2
 

3
9
3
3

9
7
6

0
0
 

9
8
8
2

1
8
1
 

9
8
8
2

1
8
1
 

9
8
8
2

1
8
1
 

9
8
8
2

1
8
1
 

9
8
8
2

1
8
1
 

9
8
8
2

1
8
1
 

9
8
8
2

1
8
1
 

9
8
8
2

1
8
1
 

9
8
8
2

1
8
1
 

9
8
8
2

1
8
1
 

9
8
8
2

1
8
1
 

9
8
8
2

1
8
1
 

9
8
8
2

1
8
1
 

9
8
8
2

1
8
1
 

9
8
8
2

1
8
1
 

9
8
8
2

1
8
1
 

9
8
8
2

1
8
1
 

9
8
8
2

1
8
1
 

X
m

t
 

S
to

c
h

a
st

ic
 m

o
d

e
l

 

4
6
6
1

2
1
2
 

4
6
6
1

2
1
2
 

4
6
2
9

7
4
0
 

4
6
2
9

7
4
0
 

4
5
6
5

1
4
1
 

4
5
9
7

7
2
1
 

4
6
2
9

7
4
0
 

4
6
2
9

7
4
0
 

4
5
9
7

7
2
1
 

4
6
2
9

7
4
0
 

4
5
6
5

1
4
1
 

4
3
2
0

0
2
5
 

4
4
9
8

2
3
4
 

4
5
9
7

7
2
1
 

4
5
6
5

1
4
1
 

4
2
4
3

9
8
9
 

4
5
3
1

9
8
4
 

4
4
6
3

8
7
7
 

i=
1
 

X
p

i,
t

 

3
6
5
0

7
0
2
 

3
6
5
0

7
0
2
 

3
6
8
2

1
7
3
 

3
6
8
2

1
7
3
 

3
7
4
6

7
7
3
 

3
7
1
4

1
9
2
 

3
6
8
2

1
7
3
 

3
6
8
2

1
7
3
 

3
7
1
4

1
9
2
 

3
6
8
2

1
7
3
 

3
7
4
6

7
7
3
 

3
9
9
1

8
8
9
 

3
8
1
3

6
8
0
 

3
7
1
4

1
9
2
 

3
7
4
6

7
7
3
 

4
0
6
7

9
2
5
 

3
7
7
9

9
3
0
 

3
8
4
8

0
3
7
 

i=
2
 

3
0
1
4

.4
8
6
 

3
0
1
4

.4
8
6
 

2
9
7
8

.9
3
4
 

2
9
7
8

.9
3
4
 

2
9
0
7

.3
9
5
 

2
9
4
3

.2
3
8
 

2
9
7
8

.9
3
4
 

2
9
7
8

.9
3
4
 

2
9
4
3

.2
3
8
 

2
9
7
8

.9
3
4
 

2
9
0
7

.3
9
5
 

2
6
5
2

.0
1
5
 

2
8
3
5

.2
5
1
 

2
9
4
3

.2
3
8
 

2
9
0
7

.3
9
5
 

2
5
7
7

.4
7
3
 

2
8
7
1

.4
0
1
 

2
7
9
8

.9
4
1
 

i=
1
 

X
r

i,
t

 

1
8
5
7

.0
9
6
 

1
8
5
7

.0
9
6
 

1
8
5
7

.0
9
6
 

1
8
5
7

.0
9
6
 

1
8
5
7

.0
9
6
 

1
8
5
7

.0
9
6
 

1
8
5
7

.0
9
6
 

1
8
5
7

.0
9
6
 

1
8
5
7

.0
9
6
 

1
8
5
7

.0
9
6
 

1
8
5
7

.0
9
6
 

1
8
5
7

.0
9
6
 

1
8
5
7

.0
9
6
 

1
8
5
7

.0
9
6
 

1
8
5
7

.0
9
6
 

1
8
5
7

.0
9
6
 

1
8
5
7

.0
9
6
 

1
8
5
7

.0
9
6
 

i=
2
 

 



Bakhtavar et al./ Journal of Mining & Environment, Vol.8, No.3, 2017 

482 

 

As it could be seen in the results of the 

deterministic and stochastic models shown in 

Table 6, the three stages of mine, processing, and 

refinery except for the first metal use their 

maximum capacities during the mine's life. There 

is some reason why the refinery unit did not work 

with its maximum capacity in producing the first 

metal. Based upon the assumed data in Table 3, 

the profit (price minus cost) of the first metal is 

approximately five times lower than the profit of 

the second one. For this reason and based on the 

objective function as the NPV maximization, first, 

the processing unit capacity was assigned to 

supply the material required for producing the 

maximum possible amount of the second metal. 

Then the rest of the processing capacity was 

assigned to produce the first concentrate as a feed 

to be sent for the refinery unit to produce the first 

metal. 

It can also be resulted that the rate of the materials 

sent from the mine to the processing plant during 

the mine’s life is the same. The annual rate of the 

sum of the first and second products sent from the 

processing unit to the refinery units during the 

mine's life is the same, as well. In addition, the 

rate of the second metal produced at the refinery 

during the mine’s life is the same; whereas, no 

specific trend can be seen in the results of the first 

metal because these rates are associated with 

frequent highs and lows. 

Clearly, the results show that the rate of materials 

sent annually from the mine to the processing unit 

and also from the processing to the refinery units 

during different years is higher in the stochastic 

model than in the deterministic model. 

Furthermore, the rate of metal produced annually 

at the stochastic model is by far more than the 

same value in the deterministic model. For this 

reason, NPV in the stochastic model is more than 

the deterministic model, and implies that the 

provided stochastic model achieves more 

favorable results than the deterministic model. In 

this case, in order to reduce the costs caused by 

over-production advances towards a relative 

increase in the rate of sales, and as a result of the 

increase in revenue from this process, this model 

leads to an increase in NPV. 

The curve of changes in the production of each 

metal is provided per the various parameters. 

Figures 2 and 3 show the trend of changes in 

production of the first and second pure metals in 

various years in the deterministic and stochastic 

models. According to Figure 2, both the 

deterministic and stochastic curves show an 

uptrend in the production rates of the first metals 

over time, in line with optimization of NPV and 

covering extant costs. Interestingly, in the 

production of the first metal based upon both the 

deterministic and stochastic models, the maximum 

and minimum production rates were seen in the 

same years. It is clear that in the deterministic 

model, the maximum value of the first metal has 

occurred in years 17 and 18 with a value of 

2617.82 tons, and the minimum value of 2267.34 

tons was achieved in year 3. For this metal in the 

stochastic model, the maximum value of 

production in years 17 and 18 occurred with a 

value of 3014.49 tons, and the minimum with a 

value of 2577.47 tons occurred in year 3. As 

illustrated in Figure 3, both the deterministic and 

stochastic curves for the second metal are 

constant. In this case, the refinery unit produced 

the second metal by its maximum capacity. 

 

 
Figure 2. Change curve of first metal production per various years in deterministic and stochastic models. 
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Figure 3. Change curve of second metal production per various years in deterministic and stochastic models. 

 

The production rates determined in completing the 

investigation of the process of producing the first 

and second metals compared to the capacity of the 

refinery stage are shown in Figures 4 and 5. 

According to these figures, the stochastic model 

attained much better results than the deterministic 

model. Figure 4 shows that the values obtained for 

the first metal in both the deterministic and 

stochastic models were obviously less than the 

refinery capacity, whereas, as shown in Figure 5, 

the resulting values for the second metal in both 

models were equal to the maximum refinery 

capacity. Figure 4 shows that by increasing the 

capacity of the refinery stage and due to the 

randomness of this parameter and its ability to 

increase in the stochastic chance-constrained 

programming, the production rate is higher in the 

stochastic model than in the deterministic model. 
 

 
Figure 4. Production rate of first metal and refinery capacity in deterministic and stochastic models. 
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Figure 5. Production rate of second metal and refinery capacity in deterministic and stochastic models. 

 

4. Conclusions 

Since the parameters such as grade, price, and 

capacity of the various parts of a metal production 

process in bimetallic deposits are not fixed in real 

and operational conditions, a stochastic model 

was developed under uncertain conditions for 

these parameters. First, a deterministic model was 

presented to determine the mine production 

strategy. Then given the uncertainty of the studied 

parameters, the stochastic model of optimizing the 

production strategy was presented. In the case 

example, the two models mentioned above for an 

assumed solved deposit were far better than the 

deterministic model, and NPV resulting from this 

model in the format of planning strategy for the 

production of a bimetallic deposit was far better 

than that of the deterministic models. The results 

obtained also showed that by sending more 

materials from the mine to the processing plant, 

based on the stochastic programming model, the 

rate of metal produced increased. It is indicative 

of the fact that by considering the uncertainties, 

the final metal produced at the refinery stage is 

increased, and its values during different years are 

significantly higher than the same values in the 

deterministic model. 
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 چکیده:

 یپارامتره ا  تی  دم قطعع   طیط ور همزم ان و تح ت ش را      ب ه بای د  بلندم دت مع دن    دی  تول یزری هبرنام دربارهکلان  های میتصم یتمام ت،یبا واقع یسازگار یبرا

 یفل ز دو روب از  مع ادن  دیتول نهیبه راهبرد تعیین رایب یتصادف یمدل ریزی محدودیت شانس، مزایای برنامه از یریگ هبا بهر ،پژوهش نیاتخاذ شود. در ا کننده نییتع

 ییمحص ول نه ا   دیتول ندیمراحل مختلف فرآ یها تیهر محصول و ظرف یازا به متی، قاریع یدر پارامترها تیشد. عدم قطع ارائه تیو عدم قطع تیقطع طیدر شرا

 بوده است. ها تر از سایر مدل شیب یو کارکرد مدل تصادف یسازگار که داد نشان شده هارائ یو تصادف یقطع های لحاصل از حل مد جیگرفته شد. نتا نظر در

 .عیار، قیمت، ظرفیتکانسارهای دوفلزی، عدم قطعیت،  کلمات کلیدی:

 

 


