Exploitation
M. Mohtasham; H. Mirzaei Nasirabad; A. Mahmoodi Markid
Abstract
Truck and shovel operations comprise approximately 60% of the total operating costs in open pit mines. In order to increase productivity and reduce the cost of mining operations, it is essential to manage the equipment used with high efficiency. In this work, the chance-constrained goal programing (CCGP) ...
Read More
Truck and shovel operations comprise approximately 60% of the total operating costs in open pit mines. In order to increase productivity and reduce the cost of mining operations, it is essential to manage the equipment used with high efficiency. In this work, the chance-constrained goal programing (CCGP) model presented by Michalakopoulos and Panagiotou is developed to determine an optimal truck allocation plan in open pit mines and reduce the waiting times of trucks and shovels. The developed goal programming (GP) model is established considering four desired goals: “maximizing shovel production”, “minimizing deviations in head grade”, “minimizing deviations in tonnage feed to the processing plants from the desired feed” and “minimizing truck operating costs”. To employ the developed model, a software is prepared in Visual Studio with C# programming language. In this computer program, the CPLEX optimizer software is incorporated for solving the developed goal programing model. The case study of Sungun copper mine is also considered to evaluate the presented GP model and prepared software. The results obtained indicate that the developed model increases the mine production above 20.6% with respect to the traditional truck allocation plan, while meeting the desired grade and the stripping ratio constraints.
Exploitation
S. Abbaszadeh; Seyed R. Mehrnia; S. Senemari
Abstract
The Ramand region is a part of the magmatic belt in Urmieh-Dokhtar structural zone in Iran, located in the SW of BuinـZahra. This area mainly consists of felsic extrusions such as rhyolites and rhyodacites. Argillic alterations with occurrences of mineralized silica veins are abundant in most of the ...
Read More
The Ramand region is a part of the magmatic belt in Urmieh-Dokhtar structural zone in Iran, located in the SW of BuinـZahra. This area mainly consists of felsic extrusions such as rhyolites and rhyodacites. Argillic alterations with occurrences of mineralized silica veins are abundant in most of the volcanic units. In this research work, we used the GIS facilities for modeling the Ramand geo-spatial databases according to the Fuzzy logic algorithms. The main phase of mineralization occurred in the altered regions and is located near the cross cut fault systems. Therefore, the main criteria for integration were the geological, structural, geophysical, and remotely sensed (Landsat7, ETM+) layers. Also we used a contoured aeromagnetic map for revealing and weighting lineaments. By the Fuzzy techniques applied, all the evidential themes were integrated to prognosis of ore mineralization potentials based on γ = 0.75. As a result, the hydrothermal alterations and their relevant post-magmatic mineralization were introduced in the south and eastern parts of the Ramand region by the fuzzification procedures. Our highlighted recommendation for more exploration activities is focused on the geophysical land surveys (electric and magnetic fields), and the geochemical sampling from mineralized regions in the depth and outcrops of alterations.
Exploitation
H. Shahi
Abstract
Discrimination of the blind and dispersed mineralization deposits is a challenging problem in geochemical exploration. The frequency domain (FD) of the surface geochemical data can solve this important issue. This new exploratory information can be achieved using the interpretation of FD of geochemical ...
Read More
Discrimination of the blind and dispersed mineralization deposits is a challenging problem in geochemical exploration. The frequency domain (FD) of the surface geochemical data can solve this important issue. This new exploratory information can be achieved using the interpretation of FD of geochemical data, which is impossible in spatial domain. In this research work, FD of the surface geochemical data is analyzed to decompose the complex geochemical patterns related to the mineral deposits. In order to identify the dispersed mineralization zone in the Chichakloo Pb–Zn deposit, a newly developed approach is proposed based on the coupling of two-dimensional Fourier transform (2DFT) and principal component analysis (PCA). The surface geochemical data is transferred to FD using 2DFT, and two low-pass filters are designed and performed on FD. Then the PCA method is employed on these frequency bands (FBs) separately. This proposed scenario desirably illustrates the relationship between the low frequencies in the surface geochemical distribution map (GDM) and the deep deposits. The informations obtained from the detailed exploration and the exploration drillings such as boreholes confirm the results obtained from this method. This new combined approach is a valuable data-processing tool and pattern-recognition technique in geochemical explorations. This approach is quite inexpensive compared to the traditional exploration methods.
Exploitation
E. Bakhtavar; A. Jafarpour; S. Yousefi
Abstract
In order to catch up with reality, all the macro-decisions related to long-term mining production planning must be made simultaneously and under uncertain conditions of determinant parameters. By taking advantage of the chance-constrained programming, this paper presents a stochastic model to create ...
Read More
In order to catch up with reality, all the macro-decisions related to long-term mining production planning must be made simultaneously and under uncertain conditions of determinant parameters. By taking advantage of the chance-constrained programming, this paper presents a stochastic model to create an optimal strategy for producing bimetallic deposit open-pit mines under certain and uncertain conditions. The uncertainties of grade, price per product, and capacities of the various stages in the process of production of the final product were considered. The results of solving the deterministic and stochastic models showed that the stochastic model had a greater compatibility and performance than the other ones.
Exploitation
A. Hosseini; M. Najafi; Seyed A. Shojaatlhosseini; R. Rafiee
Abstract
The longwall mining method is one of the most applied methods in extracting low-inclined to high-inclined coal seams. Selection of the most suitable extraction equipment is very important in the economical, safety, and productivity aspects of mining operations. There are a lot of parameters affecting ...
Read More
The longwall mining method is one of the most applied methods in extracting low-inclined to high-inclined coal seams. Selection of the most suitable extraction equipment is very important in the economical, safety, and productivity aspects of mining operations. There are a lot of parameters affecting the selection of an extraction equipment in mechanized longwall mining in steeply inclined coal seams. The important criteria involved are the geometric properties of coal seam (dip, thickness, and uniformity of coal seam), geological and hydraulic conditions (faults, fractures, joints, and underground water), and geomechanical properties of coal seam and surrounding rocks. Extraction of inclined coal seams with gradients greater than 40 degree is different from low-inclined seams, and requires a special equipment. Therefore, the influence of the above-mentioned parameters must be considered simultaneously in the selection of extraction equipment for steeply inclined seams. This paper presents an application of the Fuzzy Analytical Hierarchy Process (FAHP) method in order to select a suitable extraction equipment in the Hamkar coal mine. In the proposed FAHP model, fifteen main criteria are considered, as follow: dip of coal seam, thickness of coal seam, seam uniformity, expansion of coal seam, faults, fractures and joints, underground waters, hangingwall strength, footwall strength, coal strength, in-situ stress, equipment salvage, dilution, system flexibility, and operational costs. Among the 6 considered longwall extraction equipment system alternatives, the findings show that the most suitable extraction equipment system is shearer on footwall and a support system using hydraulic props and the transport of coal with the force of gravity.