Document Type: Case Study

Authors

Mining and Metallurgical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran

Abstract

In the present work, we aimed to focus on the identification and characterization of the heavy metal-tolerant plant species growing spontaneously at the tailings site of the Sarcheshmeh copper mine, south of Iran. Our aim was to find the plant species that were potentially useful for phytoextraction purposes. The concentrations of As, Cu, Mo, Ni, Zn, and Re were analyzed in soil as well as in the shoots and roots of plant species separately by an Inductively Coupled Plasma-Optical Emission Spectrometer (ICP–OES). The mean concentrations of As, Cu, Mo, Ni, Zn, and Re in soil were found to be 18.44±13.41, 1280±500.95, 25.06±13.33, 32.9±14.39, 251.82±95.82, and 1.7±0.78 mg kg-1, respectively. The translocation factor (TF) and the bioaccumulation factor (BCF) were defined and used to assess the amount of the elements accumulated in the shoots and roots of each plant species and to evaluate their potential for phytoextraction purposes. Based upon the results obtained and using the most common criteria, T. ramosissima, C. dactylon, A. leucoclada, and Z. fabago could strongly tolerate and extremely accumulate multiple metal(loid)s. Also Salsola kali, C. dactylon, A. leucoclada, and Z. fabago could be classified as hyperaccumulators for Re with TF and BCF greater than one and ten, respectively. The results of this work should be further developed in order to confirm the potential use of these species in phytoextraction programs.

Keywords

Main Subjects