Document Type: Case Study


University of Tehran


Dense Medium Cyclone is a high capacity device that is widely used in coal preparation. It is simple in design but the swirling turbulent flow, the presence of medium and coal with different density and size fraction and the presence of the air-core make the flow pattern in DMCs complex. In this article the flow pattern simulation of DMC is performed with computational fluid dynamics and Fluent software. Simulations are performed to give the axial velocity profile and the air-core. Multiphase simulations (air/water/medium) are performed with RSM model to predict turbulence dispersion, VOF model to achieve interface between air and water phases, Mixture model to give multiphase simulation and DPM model to predict coal particle tracking and partition curve. The numerical results were compared with experimental data and good agreement was observed. Also, separation efficiency of DMC was predicted using CFD simulations and shown by the Tromp curve. The comparison of simulated and measured Tromp curves showed that CFD simulation can predict Tromp curve reasonably within acceptable tolerance, however, for more accurate multiphase simulation including solid phase, it is suggested to use discrete element modeling (DEM) approach coupled with CFD.