Document Type: Original Research Paper


1 School of Management, Xuzhou University of Technology, Xuzhou, Jiangsu, China

2 School of Mines, China University of Mining and Technology, Xuzhou, Jiangsu, China

3 School of Management, China University of Mining and Technology, Xuzhou, Jiangsu, China


Mining is among the oldest industries. It is the primary source of raw materials for most of the sectors. Little is known about the complex inter-sectoral carbon linkages of the mining industry. In this work, we estimate the inter- and intra-sectoral carbon linkage impacts of the mining sector across ten major economies by applying an input-output model, and the hypothetical extraction method and its modified version. The hypothetical extraction method removes an industrial block from an economic system, and afterwards, it makes a comparison between the before and after removal values. China with 195.47 Mt has the highest mining emissions, followed by USA, India, and Canada with 110.99 Mt, 108.79 Mt, and 76.92 Mt, respectively. The India’s mining sector with 26.33 t/104 $ is the most carbon-intensive, followed by Japan and Canada with 6.84 t/104 $ and 5.22 t/104 $, respectively. China’s carbon emissions with -11.56% and -11.28%, respectively, have been affected the most by the total extraction of mining sector and forward carbon linkages, while for the backward carbon linkage, Canada with -1.33% has been affected the most. Canada has the highest mixed and internal emissions of 0.42 Mt and 47.88 Mt, respectively. However, China has the highest net-backward and net-forward emissions of 16.91 Mt and 189.22 Mt, respectively. For all nations, the mining sector is a net exporter of emissions to other industries. Based on the numerical findings, in this work, we discuss the mitigation measures for both the direct and indirect mining emissions.


Main Subjects