• Home
  • Browse
    • Current Issue
    • By Issue
    • By Author
    • By Subject
    • Author Index
    • Keyword Index
  • Journal Info
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Publication Ethics
    • Indexing and Abstracting
    • Related Links
    • FAQ
    • Peer Review Process
    • News
    • Journal Forms
  • Guide for Authors
  • Submit Manuscript
  • Reviewers
  • Contact Us
 
  • Login
  • Register
Home Articles List Article Information
  • Save Records
  • |
  • Printable Version
  • |
  • Recommend
  • |
  • How to cite Export to
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • Share Share
    CiteULike Mendeley Facebook Google LinkedIn Twitter
Journal of Mining and Environment
arrow Articles in Press
arrow Current Issue
Journal Archive
Volume Volume 10 (2019)
Volume Volume 9 (2018)
Volume Volume 8 (2017)
Volume Volume 7 (2016)
Volume Volume 6 (2015)
Volume Volume 5 (2014)
Volume Volume 4 (2013)
Volume Volume 3 (2012)
Volume Volume 2 (2011)
Volume Volume 1 (2010)
Rezaei, M., Asadizadeh, M. (2019). Predicting unconfined compressive strength of intact rock using new hybrid intelligent models. Journal of Mining and Environment, (), -. doi: 10.22044/jme.2019.8839.1774
Mohammad Rezaei; Mostafa Asadizadeh. "Predicting unconfined compressive strength of intact rock using new hybrid intelligent models". Journal of Mining and Environment, , , 2019, -. doi: 10.22044/jme.2019.8839.1774
Rezaei, M., Asadizadeh, M. (2019). 'Predicting unconfined compressive strength of intact rock using new hybrid intelligent models', Journal of Mining and Environment, (), pp. -. doi: 10.22044/jme.2019.8839.1774
Rezaei, M., Asadizadeh, M. Predicting unconfined compressive strength of intact rock using new hybrid intelligent models. Journal of Mining and Environment, 2019; (): -. doi: 10.22044/jme.2019.8839.1774

Predicting unconfined compressive strength of intact rock using new hybrid intelligent models

Articles in Press, Accepted Manuscript , Available Online from 12 October 2019  XML
Document Type: Original Research Paper
DOI: 10.22044/jme.2019.8839.1774
Authors
Mohammad Rezaei email 1; Mostafa Asadizadeh2
1Department of Mining Engineering, Faculty of Engineering, University of Kurdistan, Sanandaj, Iran
2Department of Mining Engineering, Hamedan University of Technology, Hamedan, Iran
Abstract
Bedrock unconfined compressive strength (UCS) is a key parameter in designing thegeosciences and building related projects comprising both the underground and surface rock structures. Determination of rock UCS using standard laboratory tests is a complicated, expensive, and time-consuming process, which requires fresh core specimens. However, preparing fresh cores is not always possible, especially during the drilling operation in cracked, fractured, and weak rocks. Therefore, some attempts have recently been made to develop the indirect methods, i.e. intelligent predictive models for rock UCS estimation, which require no core preparation and laboratory equipment. This work focuses on the application of new combinations of intelligent techniques including adoptive neuro-fuzzy inference system (ANFIS), genetic algorithm (GA), and particle swarm optimization (PSO) in order to predict rock UCS. These models were constructed based on the collected laboratory datasets upon 93 core specimens ranging from weak to very strong rock types. The proposed hybrid model results were compared with each other, and the real data and multiple regression (MR) results. These comparisons were made using coefficient of correlation, mean of square error, mean of absolute error, and variance account for indices. The comparison results proved that the ANFIS-GA combination had a relatively higher accuracy than the ANFIS-PSO combination, and both had a higher capability than the MR model. Furthermore, the ANFIS-GA and ANFIS-PSO model results were completely in accordance with the UCS laboratory test, and they were more accurate than the previous single/hybrid intelligent models. Lastly, a parametric study of the suggested models showed that the density and Schmidt hammer rebound had the highest influence, and porosity had the lowest influence on the output (UCS).
Keywords
Intact Rock; Unconfined Compressive Strength; Adaptive Neuro-Fuzzy Inference System; Genetic Algorithm; Particle Swarm Optimization
Main Subjects
Rock Mechanics
Statistics
Article View: 66
Home | Glossary | News | Aims and Scope | Sitemap
Top Top

web site traffic statistics

Creative Commons License

JME is licensed under a Creative Commons Attribution 4.0 International License.

Journal Management System. Designed by sinaweb.