Document Type: Original Research Paper

Authors

Department of Petroleum and Mining Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran

Abstract

Detection of mineralized zones based on ores and gangues is important for mine planning and excavation operation. The major goal of this research work was to determine the zones based on ores and gangues by a combination of fractal and factor analysis in the Chah Gaz iron ore (Central Iran). The Concentration-Volume (C-V) fractal method was carried out for Fe, P and S, which indicated that the main mineralized zones consisted of the Fe, S, and P values ≥ 57%, ≤ 0.4%, and ≤0.3%, respectively. Factor analysis categorized variables in two groups including factor 1 (F1) and factor 2 (F2) for ore and gangue, respectively. The C-V fractal modeling on the derived factors showed four zones for F1 and F2. Based on the correlation among the results of fractal modeling on the elements and factors, the first and second zones of F1 were proper for exploitation. Furthermore, the last and first zones of F1 and F2 could be assumed as the main waste for mining excavation.

Keywords

[1]. Seymour, F. (1995). Pit limit parameterisation for modified 3D Lerch-Grossmann Algorithm. SME Transactions 298, 1860-1864.

[2]. Hustrulid, W and Kuchta, M. (2006). Open Pit Mine Planning and Design. Taylor & Francis. Isaaks, E., Srivastava. R., 1989. An Introduction to Applied Geostatistics. Oxford University Press, New York.

[3]. Yasrebi, AB., Wetherelt, A., Foster, P. and Afzal, P. (2011) Determination and Analysis of final pit limit of Esfordi phosphate open pit mine, 22nd. World Mining Congress & Expo 2011, Istanbul, Turkey, pp 513-522.

[4]. Yasrebi, A.B., Hezarkhani, A and Afzal, P. (2017). Application of Present Value-Volume (PV-V) and NPV-Cumulative Total Ore (NPV-CTO) fractal modelling for mining strategy selection. Resources Policy 53, 384-393.

[5]. Mart, W.S and Markey, G. (2013). Intelligent Mining Software “Solutions” IMS - Lerch-Grossman Pit Optimization. MineMap Pty Ltd.

[6]. Zahedi, R and Afzal, P. (2018). DETERMINATION OF PHOSPHOROUS AND SULFUR ZONATION USING FRACTAL MODELING IN JALAL-ABAD IRON ORE, SE IRAN, The 18th International GeoConference SGEM 2018, pp 247-254.

[7]. Yasrebi, A.B and Hezarkhani, A. (2019). Resources classification using fractal modelling in Eastern Kahang Cu-Mo porphyry deposit, Central Iran. Iranian Journal of Earth Sciences 11: 56-67.

[8]. Wu, J., Yang, J., Ma, L and Li, Zh. and Shen, X. (2016). A system analysis of the development strategy of iron ore in China. Resources Policy, Volume 48, June 2016, Pages 32-400.

[9]. Ghezelbash, R., Maghsoudi, A., & Daviran, M. (2019). Combination of multifractal geostatistical interpolation and spectrum–area (S–A) fractal model for Cu–Au geochemical prospects in Feizabad district, NE Iran. Arabian Journal of Geosciences, 12(5), 152

[10]. Mandelbrot, B.B. (1983). The Fractal Geometry of Nature. W. H. Freeman, San Fransisco. 468 p.

[11]. Cheng, Q., Agterberg, F.P and Ballantyne, S.B. (1994). The separation of geochemical anomalies from background by fractal methods, Journal of Geochemical Exploration, Vol. 51, p.p. 109-130.

[12]. Li, C.J., Ma, T.H and Shi, J.F. (2003). Application of a fractal method relating concentration and distances for separation of geochemical anomalie from background, Journal of Geochemical Exploration, Vol. 77, p.p. 167– 175.

[13]. Afzal, P., Fadakar Alghalandis, Y., Khakzad, A., Moarefvand, P and Rashidnejad Omran, N. (2011). Delineation of mineralization zones in porphyry Cu deposits by fractal concentration–volume modeling, Journal of Geochemical Exploration 108, 220–232.

[14]. Ghezelbash, R., Maghsoudi, A., & Carranza, E. J. M. (2019). Mapping of single-and multi-element geochemical indicators based on catchment basin analysis: Application of fractal method and unsupervised clustering models. Journal of Geochemical Exploration, 199, 90-104.

[15] Yasrebi, A.B., Wetherelt, A., Foster, P., Coggan, J., Afzal, P., Agterberg, F and Kaveh Ahangaran, D. (2014). Application of a density–volume fractal model for rock characterisation of the Kahang porphyry deposit. International Journal of Rock Mechanics and Mining Sciences 66, 188-193.

[16]. Davis, J.C. (2002). Statistics and data analysis in Geology. John Wiley and Sons Inc, New York, pp 1-638.

[17]. Parsa, M., Maghsoudi, A., & Ghezelbash, R. (2016). Decomposition of anomaly patterns of multi-element geochemical signatures in Ahar area, NW Iran: a comparison of U-spatial statistics and fractal models. Arabian Journal of Geosciences 9(4), 260-268. .

[18]. Ghezelbash, R., Maghsoudi, A., & Carranza, E. J. M. (2020). Optimization of geochemical anomaly detection using a novel genetic K-means clustering (GKMC) algorithm. Computers & Geosciences, 134, 104335.

[19]. Yousefi, M., Kamkar-Rouhani, A and Carranza, E.J.M. (2012). Geochemical mineralization probability index (GMPI): A new approach to generate enhanced stream sediment geochemical evidential map for increasing probability of success in mineral potential mapping, Journal of Geochemical Exploration, Vol. 115, p.p. 24-35.

[20]. Afzal, P., Mirzaei, M., Yousefi, M., Adib, A., Khalajmasoumi, M., Zia Zarifi, A., Foster, P and Yasrebi, A.B. (2016). Delineation of geochemical anomalies based on stream sediment data utilizing fractal modeling and staged factor analysis. Journal of African Earth Sciences 119, 139-149.

[21]. Afzal, P., Yousefi, M., Mirzaei, M., Ghadiri-Sufi, E., Ghasemzadeh, S and Daneshvar Saein, L. (2019). Delineation of podiform-type chromite mineralization using Geochemical Mineralization Prospectivity Index (GMPI) and staged factor analysis in Balvard area (southern Iran). Journal of Mining and Environment (In press).

[22]. Ostadhosseini, A., Barati, M., Afzal, P and Lee, I. (2018). Polymetallic mineralization prospecting using fractal and staged factor analysis in Ardestan area, Central of Iran. Geopersia 8: 279-292.

[23]. Jolliffe, I.T. (2002). Principal Component Analysis, 2  ed., Springer, New York, p.p. 487-547.

[24]. Shamseddin Meigoony, M., Afzal, P., Gholinejad, M., Yasrebi, A.B and Sadeghi, B. (2014). Delineation of geochemical anomalies using factor analysis and multifractal modeling based on stream sediments data in Sarajeh 1:100,000 sheet, Central Iran. Arabian Journal of Geosciences 7: 5333–5343.

[25]. Momeni, S., Shahrokhi, S.V., Afzal, P., Sadeghi, B., Farhadinejad, T and Nikzad, M.R. (2016). Delineation of the Cr mineralization based on the stream sediment data utilizing fractal modeling and factor analysis in the Khoy 1:100,000 sheet, NW Iran. BULLETIN OF THE MINERAL RESEARCH AND EXPLORATION 152: 1-17.

[26]. Afzal, P., Dadashzadeh Ahari, H., Rashidnejad Omran, N and Aliyari, F. (2013). Delineation of gold mineralized zones using concentration-volume fractal model in Qolqoleh gold deposit, NW Iran. Ore Geology Reviews 55, 125-133.

[27]. Afzal, P., Ghasempour, R., Mokhtari, A.R and Asadi Haroni, H. (2015). Application of concentration-number and concentration-volume fractal models to recognize mineralized zones in North Anomaly iron ore deposit, Central Iran. Archives of Mining Sciences 60: 777–789.

[28]. Daneshvar Saein, L. (2017). Delineation of enriched zones of Mo, Cu and Re by concentration-volume fractal model in Nowchun Mo-Cu porphyry deposit, SE Iran. Iranian Journal of Earth Sciences 9: 64-72.

[29]. Afzal, P., Heidari, S.M., Ghaderi, M and Yasrebi, A.B. (2017). Determination of mineralization stages using correlation between geochemical fractal modeling and geological data in Arabshah sedimentary rock-hosted epithermal gold deposit, NW Iran. Ore Geology Reviews 91: 278-295.

[30]. Samani, B.A. (1988). Metallogeny of the Precambrian in Iran. Precambrian Research 39, 85-106.

[31]. Förster, H.J and Jafarzadeh, A. (1994). The Bafq mining district in Central Iran - a highly mineralized Infracambrian volcanic field. Economic Geology 89, 1697-1721.

[32]. Daliran, F and Heins-Guenter, S. (2005). Geology and metallogenesis of the phosphate and rare earth element resources of the Bafq iron-ore district, central Iran. Proceedings of the 20th World Mining Congress, Iran, p. 357- 361.

[33]. Jami, M., Dunlop, A.C and Cohen, D.R. (2007). Fluid inclusion and stable isotope study of the Esfordi apatite-magnetite deposit, Central Iran. Economic Geology 102, 1111-1128.

[34]. Mohseni, S and Aftabi, A. (2015). Structural, textural, geochemical and isotopic signatures of synglaciogenic Neoproterozoic banded iron formations (BIFs) at Bafq mining district (BMD), Central Iran: The possible Ediacaran missing link of BIFs in Tethyan metallogeny. Ore Geology Reviews 71: 215-236.

[35]. Sadeghi, B., Moarefvand, P., Afzal, P., Yasrebi, A.B and Daneshvar Saein, L. (2012). Application of fractal models to outline mineralized zones in the Zaghia iron ore deposit, Central Iran. Journal of Geochemical Exploration 122, 9-19.

[36]. Rahimi, E., Maghsoudi, A. and Hezarkhani, A. (2016). Geochemical investigation and statistical analysis on rare earth elements in Lakehsiyah deposit, Bafq district. Journal of African Earth Sciences 124, 139-150.

[37]. Bonyadi, Z., Sadeghi, R. (2019). Hydrothermal alteration associated with magnetite mineralization in the Bafq iron deposits, Iran. Journal of Asian Earth Sciences 104152.