Document Type : Original Research Paper

Authors

1 Nuclear Materials Authority, P. O. Box 530 Maadi, Cairo, Egypt

2 Geology Department, Faculty of Science, Fayoum University, Fayoum, Egypt

Abstract

In this work we are concerned with the potentiality of using mineral processing for raising the grade of the valuable heavy minerals (VHMs) from the Quaternary stream sediments of Wadi and Delta Sermatai located on the southern coast of the Red Sea, Egypt. A rigorous understanding of the chemical and mineralogical characteristics of the studied samples is a prerequisite for the selection and development of the physical processing used in order to produce a high-grade concentrate. For this purpose, the grain size distribution analysis, heavy liquid separation tests as well as XRF, and SEM analysis are performed.  The magnetite, ilmenite, garnet, zircon, rutile, apatite, sphene, pyrolusite, celestine, and heavy green silicates are the valuable heavy minerals recorded in the studied samples; but their quantity varies between Wadi and Delta. The upgrading experiments are performed via a shaking table in conjunction with the low and high-intensity magnetic separator in order to obtain the high-grade concentrates from the valuable heavy minerals, and after applying the optimum separation conditions, the total heavy mineral (THM) assay increase from 8.32% to 46.04% for Wadi Sermatai, while for Delta Sermatai increase from 8.37% to 50.13% into 8.89% and 9.59%, respectively, by mass yield. The THM recovery values reach 66.84% for Wadi Sermatai and 67.23% for Delta Sermatai. After the results of the chemical analysis of the concentrates, it is proved that the Sermatai area is considered as a potential source for some economic elements such as Fe, Ti, Zn, Zr, Cr, V, and Sr.

Keywords

Main Subjects

[1]. Graf, H. and Burkhalter, R. (2016). Quaternary deposits: concept for a stratigraphic classification and nomenclature—an example from northern Switzerland. Swiss J Geosci, 109:137–147.
[2]. Woodward, J. Williams, M. Garzanti, E. Macklin, M. and Marriner, N. (2015). From source to sink: exploring the quaternary history of the Nile. Quat Sci Rev 130:3–8,
[3]. Caldeira, D. Uagoda, R. Nogueira, A. Garnier, J. Sawakuchi, A. and Hussain, Y. (2021). Late Quaternary episodes of clastic sediment deposition in the Tarimba Cave, Central Brazil. Quaternary International, 580; (10) 22-37.
[4]. Mudd, G. and Jowitt, S. (2016). Rare earth elements from heavy mineral sands: assessing the potential of a forgotten resource. Applied Earth Science, DOI: 10.1080/03717453.2016.1194955.
[5]. Rahman, A. Pownceby, M. Tardio, J. Sparrow, G. Haque, N. and Hasan, F. (2021). Distribution, separation and characterization of valuable heavy minerals from the Brahmaputra River Basin, Kurigram District, Bangladesh. Minerals 11 (7): 786. https://doi.org/10.3390/ min11070786.
[6]. Fawzy, M. Abu El Ghar, M. Gaafar, I. El shafey, A. Diab, M. and Hussein, A. (2022a). Diit Quaternary stream sediments, southern coast of the Red Sea, Egypt: potential source of ilmenite, magnetite, zircon and other economic heavy minerals. Mining, Metallurgy & Exploration, published online January 2022.
[7]. Gosen, B. Bleiwas, D. Bedinger, G. Ellefsen, K. and Shah, A. (2016). Coastal deposits of heavy mineral sands: Global significance and US resources. Min. Eng. 68: 36–43.
[8]. Moscoso-Pinto, F. and Kim, H. (2021). Concentration and recovery of valuable heavy minerals from dredged fine aggregate waste. Minerals 11(1): 49. https://doi.org/10.3390/ min11010049.
[9]. Sampaio, J. Luz, A. Alcantera, R. and Araújo, L. (2001). Minerais Pesados Millennium. Usinas de Beneficiamento de Minérios no Brasil; Sampaio, J.A., Luz, A.B., Lins, F.F., Eds.; Center for Mineral Technology: Rio de Janeiro, Brazil, p. 233.
[10]. Best, J. and Brayshaw, A. (1985). Flow separation-a physical process for the concentration of heavy minerals within alluvial channels. J. geol. Soc. London, 142; 747-755.
[11]. Sibon, M. Jamil, H. Umor, M. and Hassan, W. (2013). Heavy Mineral Distribution in Stream Sediment of Tapah Area, Perak, Malaysia. AIP Conference Proceedings 1571, 411; https://doi.org/10.1063/1.4858692.
[12]. Jordens, A. Cheng, Y. and Waters, K. (2013). A review of the beneficiation of rare earth element bearing minerals. Miner. Eng., 41, 97–114. [CrossRef]
[13] Rahman, M. Pownceby, M. Haque, N. Bruckard, W. and Zaman, M. (2016). Valuable heavy minerals from Brahmaputra River sands if Northern Bangladesh. Appl. Earth Sci., 125, 174–188. [CrossRef]
[14]. Jordens, A. Sheridan, R. Rowson, N. and Waters, K. (2014). Processing a rare earth mineral deposit using gravity and magnetic separation. Miner. Eng., 38, 9–18. [CrossRef]
[15]. Jordens, A. Marion, C. Langlois, R. Grammatikopoulos, T. Sheridan, R. Teng, C. Demers, H. Gauvin, R. Rowson, N. and Waters, K. (2016). Beneficiation of the Nechalacho rare earth deposit. Part 2: Characterisation of products from gravity and magnetic separation. Miner. Eng., 99, 96–110. [CrossRef]
[16]. Schnellrath, J. Monte, M. Veras, A. Júnior, H. and Figueiredo, C. (2001). Minerais Pesados INB. Usinas de Beneficiamento de Minérios no Brasil; Sampaio, J.A., Luz, A.B., Lins, F.F., Eds.; Center for Mineral Technology: Rio de Janeiro, Brazil, p. 189.
[17]. Rosental, S. Terras Raras, and Rohas E. (2005). Minerais Industriais Usos e Especificações; Luz, A.B., Lins, F.F., Eds.; Center for Mineral Technology: Rio de Janeiro, Brazil, p. 727.
[18]. Laxmi, T. Srikant, S. Rao, D. and Rao, R. (2013). Beneficiation studies on recovery and in-depth characterization of ilmenite from red sediments of badlands topography of Ganjam District, Odisha, India. Int. J. Min. Sci. Technol. 23; 725–731.
[19]. Fawzy, M. Abu El Ghar, M. Gaafar, I. El shafey, A. Diab, M. and Hussein, A. (2022). Recovery of valuable heavy minerals via gravity and magnetic separation operations from Diit Quaternary stream sediments, southern coast of the Red Sea, Egypt. The international conference on chemical and environmental engineering, accepted and under publication.
[20]. Raslan, M. and Fawzy, M. (2018). Mineralogy and physical upgrading of fergusonite-Y and Hf-zircon in the mineralized pegmatite of Abu Dob granite, Central Eastern Desert, Egypt. Tabbin Inst. Metallurgical Stud. (TIMS Bulletin), 107; 52–65.
[21]. Raslan, M. Kharbish, S. Fawzy, M. El Dabe, M. and Fathy, M. (2021). Gravity and Magnetic Separation of Polymetallic Pegmatite from Wadi El Sheih Granite, Central Eastern Desert, Egypt. Journal of Mining Science. 57: (2): 316–326.
[22]. Fawzy, M. Mahdy, N. and Mabrouk, S. (2020). Mineralogical characterization and physical upgrading of radioactive and rare metal minerals from Wadi Al-Baroud granitic pegmatite at the Central Eastern Desert of Egypt. Arab. J. Geosci., 13; 413.
[23]. Kim, K. and Jeong, S. (2019). Separation of Monazite from Placer Deposit by Magnetic Separation. Minerals, 9, 149. [CrossRef]
[24]. Rejith, R.G. and Sundararajan, M. (2018). Combined magnetic, electrostatic, and gravity separation techniques for recovering strategic heavy minerals from beach sands. Mar. Georesources. Geotechnol., 35, 959–965. [CrossRef]
[25]. Routray, S. and Rao, R. (2011). Beneficiation and Characterization of Detrital Zircons from Beach Sand and Red Sediments in India. J. Miner. Mater. Charact. Eng., 10; 1409–1428.
[26]. Routray, S. Laxmi, T. and Rao, R. (2013). Alternate Approaches to Recover Zinc Mineral Sand from Beach Alluvial Placer Deposits and Bandlands Topography for Industrial Applications. Int. J. Mater. Mech. Eng. 3 (2): 80–90.
[27]. Zhai, J. Chen, P. Wang, H. Hu, Y. and Sun, W. (2017). Floatability improvement of Ilmenite Using Attrition-Scrubbing as a Pretreatment method. Minerals, 7, 13. [CrossRef]
 [28]. Tranvik, E. Becker, M. Palsson, B. Franzidis, J. and Bradshaw, D. (2017). Towards cleaner production–Using floatation to recover monazite from a heavy mineral sands zircon waste stream. Miner. Eng., 101; 30–39.
[29]. Fawzy, M. (2018). Surface characterization and froth flotation of Fergusonite using a combination of anionic and nonionic collectors. Physicochem. Probl. Mineral Process. 54 (3): 677–87.
[30]. Fawzy, M. (2021). Flotation separation of dravite from phlogopite using a combination of anionic/nonionic surfactants. Physicochem. Probl. Miner. Process. 57 (4): 87-95.
 [31]. EGSMA (1999). Egyptian Geological Survey and Mining; Geologic Map of the Jabal Ilbah, Quadrangle, Egypt, scale 1:250 0000. Geol Surv Cairo, Egypt.
[32]. EGSMA (2002). Egyptian Geological Survey and Mining; Geologic Map of the Marsa Shaab, Quadrangle, Egypt, scale 1:250 0000. Geol Surv Cairo, Egypt.
[33]. Sakr, S. El-Afandy, A. Abu Halawa, A. and Awad, M. (2011). Heavy mineral diagnosis of Ras Baghdady black beach sand: accumulations and significance. Al-Azhar Bull Sci. 22 (2):81–108.
[34]. Abdel-Karim, A. and Barakat, M. (2017). Separation, upgrading, and mineralogy of placer magnetite in the black sands, northern coast of Egypt. Arab J Geosci 10 (14): 298.
[35]. Rydberg, J. (2014). Wavelength dispersive X-ray fluorescence spectroscopy as a fast, non-destructive and cost-effective analytical method for determining the geochemical composition of small loose-powder sediment samples. J. Paleolimnol 52:265–276.