Document Type : Original Research Paper

Authors

1 Department of Mining Engineering, Sahand University of Technology, Tabriz, Iran

2 Assistant Professor of Construction Management, Department of Islamic Azad University, Iran

10.22044/jme.2024.14136.2666

Abstract

Excavation with Tunnel Boring Machine (TBM) in urban environments can have risks, such as ground surface settlement. The empty space between the cutterhead and the segment should be filled with suitable grout during the excavation. Nowadays, using grout behind the segment and other fillers fill the empty space behind the segment and reduce the amount of ground surface settlement. Undoubtedly, using a grout with appropriate mechanical behavior can be a suitable substitute for excavated soil in mechanized tunneling. In this research, the mechanical behavior of the grout behind the segment during injection into the space between the soil and the segment and its mixture with the soil is studied. Also, the effect of mechanical properties of grout mixed with soil on the ground surface settlement is investigated using numerical modeling. The components of two-component grout of this study comprises Sufian type 2 cement with 28-day strength of 44 MPa and density of 3050 kg/m3, Salafchegan bentonite with density of 2132 kg/m3 and precipitator of liquid sodium silicate with density of the solution 1500 kg/m3. The results of the laboratory studies indicated that mixing the grout and soil increases the mechanical properties of grout significantly. Increasing the soil in the mixture of soil and grout up to 40% increases the uniaxial compressive strength up to 300%, the elasticity of modulus up to 156% and the cohesion of the mixture up to 100%. On the other hand, based on the results of numerical modeling, the proper injection pressure can significantly reduce the ground surface settlement. Increasing the injection pressure from 0 to 120 kPa has a 17% influence on the reduction of ground surface settlement.

Keywords

Main Subjects