Document Type: Case Study


1 Mining Engineering Faculty, Sahand University of Technology, Tabriz, Iran

2 School of Mining Engineering, College of Engineering, University of Tehran, Tehran, Iran

3 Department of Mining Engineering, Colorado School of Mines, Denver, USA


Rock abrasivity is an essential factor for selecting cutting tools, estimating tool wear and life, and ultimately, matching various mechanized excavation systems with a given geologic condition. It also assists engineers to determine economic limits of different cutting tools and machines used in civil and mining projects. The Cerchar abrasion test is a simple and most widely used method for rock abrasivity assessments. However, it has some shortcomings to describe the steel-rock interaction during the cutting process. In this work, two new parameters are used to describe the pin-rock interaction in the Cerchar abrasion test and to evaluate the efficiency of the rock scratching process. A set of 41 different rock samples are tested by a newly developed testing device. The device provides a more precise control of the testing operational parameters, and measures the applied frictional force on the pin and its horizontal and vertical displacements on the sample surface. The results obtained are used to calculate the Modified Cerchar Abrasion Index (MCAI) and the Scratch Energy Index (SEi), as two newly developed parameters. The accuracy of the calculated parameters is discussed. Our investigations show that MCAI has closer correlations with rock mechanical parameters than CAI, and therefore, has a higher potential to estimate the rock cutting tool wear in tunneling applications. Also SEi shows sensible correlations with sample hardness and mechanical properties. The results obtained show that SEi can be used to compare the efficiency of various pin hardnesses to create scratches on various rock samples, and could be used as a determinative parameter in selecting the cutting tool hardness.


Main Subjects