M. Moghadasi; A. Nejati Kalateh; M. Rezaie
Abstract
Gravity data inversion is one of the important steps in the interpretation of practical gravity data. The inversion result can be obtained by minimization of the Tikhonov objective function. The determination of an optimal regularization parameter is highly important in the gravity data inversion. In ...
Read More
Gravity data inversion is one of the important steps in the interpretation of practical gravity data. The inversion result can be obtained by minimization of the Tikhonov objective function. The determination of an optimal regularization parameter is highly important in the gravity data inversion. In this work, an attempt was made to use the active constrain balancing (ACB) method to select the best regularization parameter for a 3D inversion of the gravity data using the Lanczos bidiagonalization (LSQR) algorithm. In order to achieve this goal, an algorithm was developed to estimate this parameter. The validity of the proposed algorithm was evaluated by the gravity data acquired from a synthetic model. The results of the synthetic data confirmed the correct performance of the proposed algorithm. The results of the 3D gravity data inversion from this chromite deposit from Cuba showed that the LSQR algorithm could provide an adequate estimate of the density and geometry of sub-surface structures of mineral deposits. A comparison of the inversion results with the geologic information clearly indicated that the proposed algorithm could be used for the 3D gravity data inversion to estimate precisely the density and geometry of ore bodies. All the programs used in this work were provided in the MATLAB software environment.
M. Rezaie; S. Moazam
Abstract
Inversion of magnetic data is an important step towards interpretation of the practical data. Smooth inversion is a common technique for the inversion of data. Physical bound constraint can improve the solution to the magnetic inverse problem. However, how to introduce the bound constraint into the inversion ...
Read More
Inversion of magnetic data is an important step towards interpretation of the practical data. Smooth inversion is a common technique for the inversion of data. Physical bound constraint can improve the solution to the magnetic inverse problem. However, how to introduce the bound constraint into the inversion procedure is important. Imposing bound constraint makes the magnetic data inversion a non-linear inverse problem. In this work, a new algorithm is developed for the 3D inversion of magnetic data, which uses an efficient penalization function for imposing the bound constraint and Gauss Newton method to achieve the solution. An adaptive regularization method is used in order to choose the regularization parameter in this inversion approach. The inversion results of synthetic data show that the new method can produce models that adequately match the real location and shape of the synthetic bodies. The test carried out on the field data from Mt. Milligan copper-gold porphyry deposit shows that the new inversion approach can produce the magnetic susceptibility models consistent with the true structures.
M. Rezaie; A. Moradzadeh; A. Nejati Kalate
Abstract
One of the most remarkable basis of the gravity data inversion is the recognition of sharp boundaries between an ore body and its host rocks during the interpretation step. Therefore, in this work, it is attempted to develop an inversion approach to determine a 3D density distribution that produces a ...
Read More
One of the most remarkable basis of the gravity data inversion is the recognition of sharp boundaries between an ore body and its host rocks during the interpretation step. Therefore, in this work, it is attempted to develop an inversion approach to determine a 3D density distribution that produces a given gravity anomaly. The subsurface model consists of a 3D rectangular prisms of known sizes and positions and unknown density contrasts that are required to be estimated. The proposed inversion scheme incorporates the Cauchy norm as a model norm that imposes sparseness and the depth weighting of the solution. A physical-bound constraint is enforced using a generic transformation of the model parameters. The inverse problem is posed in the data space, leading to a smaller dimensional linear system of equations to be solvedand a reduction in the computation time. For more efficiency, the low-dimensional linear system of equations is solved using a fast iterative method such as Lanczos Bidiagonalization. The tests carried out on the synthetic data show that the sparse data-space inversion produces blocky and focused solutions. The results obtained for the 3D inversion of the field gravity data (Mobrun gravity data) indicate that the sparse data-space inversion could produce the density models consistent with the true structures.