Exploitation
Mohammad Sina Abdollahi; Mehdi Najafi; Alireza Yarahamdi Bafghi; Ramin Rafiee
Abstract
The stability analysis of chain pillars is crucial, especially as coal extraction rates increase, making it essential to reduce the size of these pillars. Therefore, a new method for estimating the load on chain pillars holds significant importance. This research introduces a novel solution for estimating ...
Read More
The stability analysis of chain pillars is crucial, especially as coal extraction rates increase, making it essential to reduce the size of these pillars. Therefore, a new method for estimating the load on chain pillars holds significant importance. This research introduces a novel solution for estimating side abutment load and analyzing the stability of chain pillars using the dynamic mode of the Coulmann Graphical (CG) method. The solution is implemented using Visual Studio software and is named Coulmann Chain Pillar Stability Analysis (CCPSA). The CG method is widely recognized in civil engineering as a highly efficient technique for determining soil side abutment pressure in both static and dynamic conditions. This method involves calculating the top-rupture wedge of chain pillars using the CG method. The CCPSA software functions share significant similarities with those of the Analysis Longwall Pillar Stability (ALPS) method. However, the main point of departure between the proposed method and the ALPS empirical method lies in their respective approaches to calculating side abutment load on chain pillars and evaluating subsidence conditions. The effectiveness of this method has been validated using a database of chain pillars from various mines worldwide and has been compared with the ALPS method. The results of the comparison demonstrate that the CCPSA is highly effective in evaluating chain pillar stability. This underscores the potential of the CG method and CCPSA software in providing valuable insights for assessing and ensuring the stability of chain pillars in mining operations.
Exploitation
Emad Ansari; Ramin Rafiee; Mohammad Ataei
Abstract
Due to longwall mining, a large space without any support is created, and the in-situ stress regimes change. The change of the in-situ stress regimes affects the roof and face of the adjacent panel. In other words, the strata behavior would be different from the intact condition during the previous panel ...
Read More
Due to longwall mining, a large space without any support is created, and the in-situ stress regimes change. The change of the in-situ stress regimes affects the roof and face of the adjacent panel. In other words, the strata behavior would be different from the intact condition during the previous panel mining. In this study, two adjacent panels are simulated in the FLAC3D software to study the effect of panel extraction on its adjacent panel strata behavior during longwall mining. The available data of the Tabas Parvadeh Coal Mine panels is used for this purpose. According to the numerical modeling results, the length of the first roof’s weighting effect (FRWE) in the gob of the first and second panels is calculated, respectively, as 26 and 21 meters. In other words, the gob dimension in the second panel is reduced by about 19.2%, and the vertical displacement value is increased by about 18.5%. In addition, the chance of roof collapse and face spalling during the first-panel mining is more than the second-panel. It means that roof and face instability in the (FRWE) during the first-panel mining is confirmed, while in the second-panel extraction is just very likely.
Rock Mechanics
H. Zebarjadi Dana; R. Khaloo Kakaie; R. Rafiee; A.R. Yarahmadi Bafghi
Abstract
Slope stability analysis is one of the most important problems in mining and geotechnical engineering. Ignoring the importance of these problems can lead to significant losses. Selecting an appropriate method to analyze the slope stability requires a proper understanding of how different factors influence ...
Read More
Slope stability analysis is one of the most important problems in mining and geotechnical engineering. Ignoring the importance of these problems can lead to significant losses. Selecting an appropriate method to analyze the slope stability requires a proper understanding of how different factors influence the outputs of the analyses. This paper evaluates the effects of considering the real geometry, changes in the mesh size, and steepness of the slope, as the dimensional effects, and changes in the geomechanical parameters, as the media effects on the global slope stability of an open-pit mine using finite difference methods with a strength reduction technique. The case study is the Tectonic Block I in the old pit (steep slope) and the redesigned new pit (gentle slope) of the Choghart iron mine. In the first step, a series of 2D and 3D slope stability analyses are performed and compared in terms of safety and potential failure surface. The results obtained show that by considering the real geometry of the slope, the FOS3D/FOS2D ratio (3D-effect) is more than 1 in the all cases. The 3D-effect in the new pit is smaller than that in the old one. In the next step, sensitivity analysis of the cohesion and the friction angle is performed for the 2D and 3D analyses. The results obtained show that the sensitivity of the analyses in terms of the 3D-effect to the change in the friction angle, especially in a low-friction angle, is more significant than that to the change in the cohesion.
Rock Mechanics
R. Rafiee; A. Azarfar
Abstract
One of the main concerns of an underground coal mining engineer is the safety and stability of the mine. One way that the safety and stability can be ensured is to know and understand the coal mine geology and how it reacts to the mining process. One technique that has shown a lot of success in the coal ...
Read More
One of the main concerns of an underground coal mining engineer is the safety and stability of the mine. One way that the safety and stability can be ensured is to know and understand the coal mine geology and how it reacts to the mining process. One technique that has shown a lot of success in the coal mining industry for geologic technical evaluation purposes is the coal mine roof rating (CMRR). The CMRR classification is based on geotechnical data taken from the immediate roof layers within the mine. Since the uncertainty exists in geotechnical data, and CMRR process depends on the expert’s idea implicitly, the final value may be inaccurate. In this paper, the fuzzy type 2 is used to overcome this uncertainty. To design the fuzzy system for calculating the CMRR, only quantitative variables (UCS, spacing, and persistence) are considered as fuzzy inputs. Finally, the scores of CMRR and FCMRR for four units of Riccall mine are compared.
Exploitation
A. Hosseini; M. Najafi; Seyed A. Shojaatlhosseini; R. Rafiee
Abstract
The longwall mining method is one of the most applied methods in extracting low-inclined to high-inclined coal seams. Selection of the most suitable extraction equipment is very important in the economical, safety, and productivity aspects of mining operations. There are a lot of parameters affecting ...
Read More
The longwall mining method is one of the most applied methods in extracting low-inclined to high-inclined coal seams. Selection of the most suitable extraction equipment is very important in the economical, safety, and productivity aspects of mining operations. There are a lot of parameters affecting the selection of an extraction equipment in mechanized longwall mining in steeply inclined coal seams. The important criteria involved are the geometric properties of coal seam (dip, thickness, and uniformity of coal seam), geological and hydraulic conditions (faults, fractures, joints, and underground water), and geomechanical properties of coal seam and surrounding rocks. Extraction of inclined coal seams with gradients greater than 40 degree is different from low-inclined seams, and requires a special equipment. Therefore, the influence of the above-mentioned parameters must be considered simultaneously in the selection of extraction equipment for steeply inclined seams. This paper presents an application of the Fuzzy Analytical Hierarchy Process (FAHP) method in order to select a suitable extraction equipment in the Hamkar coal mine. In the proposed FAHP model, fifteen main criteria are considered, as follow: dip of coal seam, thickness of coal seam, seam uniformity, expansion of coal seam, faults, fractures and joints, underground waters, hangingwall strength, footwall strength, coal strength, in-situ stress, equipment salvage, dilution, system flexibility, and operational costs. Among the 6 considered longwall extraction equipment system alternatives, the findings show that the most suitable extraction equipment system is shearer on footwall and a support system using hydraulic props and the transport of coal with the force of gravity.