Rock Mechanics
H. Fattahi; N. Zandy Ilghani
Abstract
Horizontal directional drilling is usually used in drilling engineering. In a variety of conditions, it is necessary to predict the torque required for performing the drilling operation. Nevertheless, there is presently not a convenient method available to accomplish this task. In order to overcome this ...
Read More
Horizontal directional drilling is usually used in drilling engineering. In a variety of conditions, it is necessary to predict the torque required for performing the drilling operation. Nevertheless, there is presently not a convenient method available to accomplish this task. In order to overcome this difficulty, the current work aims at predicting the required rotational torque (RT) to operate horizontal directional drilling on the 7 effective parameters including the length of drill string in the borehole (L), axial force on the cutter/bit (P), total angular change of the borehole (KL), radius for the ith reaming operation (Di), rotational speed (rotation per minute) of the bit (N), mud flow rate (W), and mud viscosity (V). In this paper, we propose an approach based on the model selection criteria such as various statistical performance indices mean squared error (MSE), variance account for (VAF), root mean squared error (RMSE), squared correlation coefficient (R2), and mean absolute percentage error (MAPE) to select the most appropriate model among a set of 20 candidate ones to estimate RT, given a set of observed data. Once the most appropriate model is selected, a Bayesian framework is employed to develop the predictive distributions of RT, and to update them with new project-specific data that significantly reduce the associated predictive uncertainty. Overall, the results obtained indicate that the proposed RT model possesses a satisfactory predictive performance.
Environment
N. Zandy Ilghani; F. Ghadimi; M. Ghomi
Abstract
The Haft-Savaran Pb-Zn mineralization zone with the lower Jurassic age is located in the southern basin of Arak and Malayer-Isfahan metallogenic belt of Iran. Based upon the geological map of the Haft-Savaran area, the sandstone and shale of lower Jurassic are the main rocks of Pb-Zn deposit. In this ...
Read More
The Haft-Savaran Pb-Zn mineralization zone with the lower Jurassic age is located in the southern basin of Arak and Malayer-Isfahan metallogenic belt of Iran. Based upon the geological map of the Haft-Savaran area, the sandstone and shale of lower Jurassic are the main rocks of Pb-Zn deposit. In this area, 170samples were taken from 33 boreholes, and44 elements were measured by the ICP-MS method. Adaptation of the alteration index and Pb–Zn mineralization was investigated in this work. The model was created based on the Sericitic, Spitz-Darling, Alkali, Hashimoto, and Silicification Indices in all boreholes. This work showed that the Sericite, Hashimoto, Spitz-Darling, and Silicification indices increased around mineralization, and the alkali index decreased around it. Development of the alteration indices indicates that direction of the ore-bearing solution is NE-SW, and that this trend is consistent with the faults in the area. Based upon the 3D models and other data interpretations, Pb–Zn and elements such as Fe, Mn, Cr, and Ni have deposited within the alteration zones.