Mineral Processing
A.R. Ghasemi; A.R. Hasankhoei; E. Razi; Gh.A. Parsapour; S. Banisi
Abstract
Pelletizing plant of the Gol-E-Gohar mining and industrial company consists of a burner, a dry ball mill (6.2 m × 13 m), and an air separator. The ball mill consists of a 2 m-long drying and an 11 m-long grinding chambers. The iron ore concentrate is fed to the drying chamber by a feed chute. It ...
Read More
Pelletizing plant of the Gol-E-Gohar mining and industrial company consists of a burner, a dry ball mill (6.2 m × 13 m), and an air separator. The ball mill consists of a 2 m-long drying and an 11 m-long grinding chambers. The iron ore concentrate is fed to the drying chamber by a feed chute. It was found that when the feed moisture content increased from 1.3% to 3.5%, the throughput decreased by 12% (35 t/h) indicating a low performance of the dryer. Monitoring the wear rate of flights for a period of 12 months showed that the first 0.8 m (59%) length of the dryer length did not experience any wear. To overcome this problem, various feed chute designs with different geometries were simulated by the KMPCDEM© software. With the aim of arriving at a proper material trajectory, where the total length of the dryer is used, a new feed chute was selected. The simulation results indicated that if the height of the feed chute is increased from 1.60 to 2.26 m and the slope is increased from 45 to 48 degrees the material arrives at the first 0.48 m of the drying chamber. In this manner, the unused part of the drying chamber decreases from 59% to 36% of the length. After installation of the new feed chute during a period of three months, the throughput increased by 36 t/h.