F. Doulati Ardejani; S. Maghsoudy; M. Shahhosseini; B. Jodeiri Shokri; Sh. Doulati Ardejani; F. Shafaei; F. Amirkhani Shiraz; A. Rajaee
Abstract
Considering that mining has many environmental impacts from the exploration phase to production and finally closure, it is necessary to plan the activities so that the concept of green mining is realized in its true meaning. This means that mining is carried out in order to obtain the minerals that are ...
Read More
Considering that mining has many environmental impacts from the exploration phase to production and finally closure, it is necessary to plan the activities so that the concept of green mining is realized in its true meaning. This means that mining is carried out in order to obtain the minerals that are used in various industries; however, by taking appropriate measures, the impacts of mining on the environment are reduced to a minimum level. Since there is little information about the environmental, ecological, hydrological, and hydrogeological status in most mining areas, a comprehensive study of the area's water, soil, plants, and animal species should be conducted. The existence of permanent and seasonal rivers in the vicinity of some mines, in some cases being located in protected areas of the Iranian Department of Environment, and the presence of vegetation near some mines are among the matters that cause many environmental challenges in the mining areas. For this purpose, a series of comprehensive studies are critical in the pre-mining, during mining, and closure phases of the mine life. In addition, detailed studies should be done on factories such as smelters located in the mining areas. Life cycle assessment (LCA) is widely used in order to determine the environmental status of these factories. Furthermore, the issue of process water and water recycling, as well as waste management, should be considered. Nowadays, the environmental monitoring technology is one of the widely used tools in many mines in the world. Moreover, these mining companies' green space management system should be given special attention according to the obligatory standards of the Iranian Department of Environment. In this paper, a conceptual framework for the green mining method will be introduced for the coal mines to consider the economic and social aspects, and we pay a special attention to the health, safety, and environmental requirements.
R. Siyar; F. Doulati Ardejani; M. Farahbakhsh; M. Yavarzadeh; S. Maghsoudy
Abstract
Copper smelting and refinery factories are the final stages of a pyrometallurgical processing chain, and they cause many environmental challenges around the world. One of the most common environmental problems of these factories is toxic emissions. These toxic gases have harmful effects on the vegetation, ...
Read More
Copper smelting and refinery factories are the final stages of a pyrometallurgical processing chain, and they cause many environmental challenges around the world. One of the most common environmental problems of these factories is toxic emissions. These toxic gases have harmful effects on the vegetation, animal species, soils, and water resources around the factories. Phytoremediation can play an important role in the reduction of the adverse effects of environmental pollutions arising from copper smelting and refinery factories. In this paper, we first discuss different types of pollutions caused by copper metallurgical factories, and present the main research approaches and studies conducted on these factories. In the second part, we provide a summary and comparison of different remediation technologies used to reduce the environmental pollutions of these factories. Besides, the advantages and disadvantages of each method is also investigated. In the third part, we review the different aspects of the phytoremediation including the effective mechanisms, different types of plants, application environments, and the effective factors. The next part includes the selection of suitable plants for the phytoremediation process applied for copper metallurgical factories and investigation of the native and cultivated hyperaccumulator plants. In addition, different efficiency indices are introduced for evaluating the phytoremediation efficiency and selecting an appropriate hyperaccumulator plant. At the final stage, some appropriate plant species for various types of phytoremediation are introduced. The effects of different environmental stresses and the possibilities of integrating phytoremediation with other remediation technologies as well as the advantages and disadvantages of phytoremediation are eventually investigated.