Exploration
Shirin Jahanmirir; Ali Aalianvari; Hossein Ebrahimpour-Komleh
Abstract
This paper introduces the Human Mental Search (HMS) algorithm as a novel and superior optimization technique for predicting groundwater seepage in tunnel environments. Traditional methods for predicting such seepage often struggle with the complexities of subterranean water flow, particularly in heterogeneous ...
Read More
This paper introduces the Human Mental Search (HMS) algorithm as a novel and superior optimization technique for predicting groundwater seepage in tunnel environments. Traditional methods for predicting such seepage often struggle with the complexities of subterranean water flow, particularly in heterogeneous geological conditions, and while machine learning approaches have offered improvements, they often require significant computational resources. The HMS algorithm, inspired by human cognitive processes, employs memory recall, adaptive clustering, and strategic selection to efficiently refine solutions. Our results demonstrate that HMS significantly outperforms established algorithms in predicting groundwater seepage, achieving an R² value of 0.9988, a Mean Squared Error (MSE) of 0.0002, and a Root Mean Squared Error (RMSE) of 0.0137. In comparison, the Whale Optimization Algorithm (WOA) achieved an R² of 0.9951 with much higher MSE and RMSE, and other methods, like Genetic Programming and ANN-PSO, show higher error values. The HMS algorithm also showed a Variance Accounted for (VAF) of 99.88% and a Mean Absolute Error (MAE) of 0.0041, further validating its high predictive accuracy. This study highlights the HMS algorithm’s superior performance and computational efficiency for optimizing groundwater seepage predictions, positioning it as a powerful tool for geotechnical engineering applications, including real-time monitoring.
Exploration
shirin Jahanmiri; Ali Aalianvari; Malihehe Abbaszadeh
Abstract
Groundwater inflow is a critical subject within the domains of hydrology, hydraulic engineering, hydrogeology, rock engineering, and related disciplines. Tunnels excavated below the groundwater table, in particular, face the inherent risk of groundwater seepage during both the excavation process and ...
Read More
Groundwater inflow is a critical subject within the domains of hydrology, hydraulic engineering, hydrogeology, rock engineering, and related disciplines. Tunnels excavated below the groundwater table, in particular, face the inherent risk of groundwater seepage during both the excavation process and subsequent operational phases. Groundwater inflows, often perceived as rare geological hazards, can induce instability in the surrounding rock formations, leading to severe consequences such as injuries, fatalities, and substantial financial expenditures. The primary objective of this research is to explore the application of machine learning techniques to identify the most accurate method of forecasting tunnel water seepage. The prediction of water loss into the tunnel during the forecasting phase employed a tree equation based on gene expression programming (GEP). These results were compared with those obtained from a hybrid model comprising particle swarm optimization (PSO) and artificial neural networks (ANN). The Whale Optimization Algorithm (WOA) was selected and developed during the optimization phase. Upon contrasting the aforementioned methods, the Whale Optimization Algorithm demonstrated superior performance, precisely forecasting the volume of water lost into the tunnel with a correlation coefficient of 0.99. This underscores the effectiveness of advanced optimization techniques in enhancing the accuracy of groundwater inflow predictions and mitigating potential risks associated with tunneling activities.
Sirvan Moradi; Seyed Davoud Mohammadi; Abbas Aghajani Bazzazi; Ali Aali Anvari; Ava Osmanpour
Abstract
Feasibility studies of mining and industrial investment projects are usually associated with uncertain parameters; hence, these investigations rely on prediction. In these particular conditions, simulation and modelling techniques remain the most significant approaches to reduce the decision risk. Since ...
Read More
Feasibility studies of mining and industrial investment projects are usually associated with uncertain parameters; hence, these investigations rely on prediction. In these particular conditions, simulation and modelling techniques remain the most significant approaches to reduce the decision risk. Since several uncertain parameters are incorporated in the modelling process, distribution functions are employed to explain the parameters. However, due to the usual constrain of limited data, these functions cannot significantly explain the variation of those uncertain parameters. Support vector machine, one of the efficient techniques of artificial intelligence, provides the appropriate results in the classification and regression tasks. The principal aims of this research work are to integrate the simulation and artificial intelligence methods to manage the risk prediction of an economic system under uncertain conditions. The financial process of the Halichal mine in the Mazandaran province, Iran, is considered a case study to prove the performance of the support vector machine technique. The results show that integrating the simulation and support vector machine techniques can provide more realistic results, especially when including uncertain parameters. The correlation between the net present value obtained from the simulation and the net present value is about 0.96, which shows the capability of artificial intelligence methods and the simulation process. The root mean square error of the support vector machine prediction is about 0.322, which indicates a low error rate in the net present value estimation. The values of these errors prove that this method has a high accuracy and performance for predicting a net present value in the Halichal granite mine.