Rock Mechanics
Seyed M. Fatemi Aghda; M. Kianpour; M. Talkhablou
Abstract
In this research, the relationship between P-wave velocity (Vp) and Electrical Resistivity (ER) parameters with rock mass quality indices is investigated; parameters such as rock mass quality classification (Q) and modified system for sedimentary rocks, known as Qsrm. For making predictive models, about ...
Read More
In this research, the relationship between P-wave velocity (Vp) and Electrical Resistivity (ER) parameters with rock mass quality indices is investigated; parameters such as rock mass quality classification (Q) and modified system for sedimentary rocks, known as Qsrm. For making predictive models, about 1200 data-sets extracted from sections drilled in Seymareh and Karun 2 Dam Sites (SDS and KDS) in Asmari Formation, south-west Iran. Statistical and fuzzy methods used to study the relationships between physical characteristics and rock mass quality. Since in Qsrm classification, the existence of cavities, layering and rock texture is considered in addition to the parameters considered in the Q classification; therefore, it provides a better description of rock mass and is closely related with Vp and ER parameters. The obtained equations for predicting Q and Qsrm showed the determination coefficients (R2) 0.48 and 0.67, respectively, and the coefficient of determination 0.86 for Qsrm calculated from the fuzzy model. Finally, Mean Absolute Deviation (MAD), Variance Accounted For (VAF) and Root Mean Square Error (RMSE) used to check the prediction performance of statistical and fuzzy methods. The results of the calculated errors also showed that fuzzy models are interesting because they have good accuracy for predicting Qsrm. In addition, by increasing the degree of karstifiction, the efficiency of the geophysical method for estimate of Q decreases rapidly, this is due to ignoring the cavities in these categories.