Ataallah Bahrami; Reza Hassanpour Kashani; Mirsaleh Mirmohammadi; Fatemeh Kazemi; Ahmad Fathzadeh; Yousef Ghorbani
Abstract
Due to anthropogenic activities of arsenic, its contamination has been widely recognized as one of the most consequential environmental pollutants. This study aims to investigate the possible controlling factors in the amount of arsenic in copper concentrate of the Sungun processing plant – located ...
Read More
Due to anthropogenic activities of arsenic, its contamination has been widely recognized as one of the most consequential environmental pollutants. This study aims to investigate the possible controlling factors in the amount of arsenic in copper concentrate of the Sungun processing plant – located in northwestern Iran. For this purpose, via utilization of process mineralogy approach, an attempt is made to provide a mineralogical-based approach to reduce or remove As from copper concentrate. Chemical analysis of flotation circuit products shows changes of 0.13-1.00% for As in concentrate, and up to 0.003% for tailings. Arsenic is recovered to concentrate in the form of sulfosalt minerals including tennantite and enargite, along with copper sulfides. In order to reduce the arsenic in copper concentrate, flotation tests are performed in Eh values of +300, +200, +100, 0, -100, -200, and -300 mV. Based on the results, a re-flotation step on copper concentrate with a pulp potential range of -300 to +300 mV is conducted as an effective and optimal solution to reduce the amount of As. At a potential of -100 mV, Cu-As minerals (tennantite and enargite) tend to be depressed, and at +300 mV, these minerals tend to float. During the processing circuit, via flotation of particles with a size of -25 μm and adjusting the pulp potential to +300 mV, it is possible to produce two copper concentrates with low arsenic content (< 0.2%) and high arsenic content (> 0.2%). The first concentrate, which is flotation tailings, can be sold in the same way. The second one can be sold after complete removal of arsenic by leaching and then collection of harmful gases.
Mineral Processing
B. Nemati Akhgar; A. Fathzade; B. Golizadeh; S. Hajilou
Abstract
The flotation circuit in Sungun copper plant consists of two column flotation cells as cleaner, having fixed-spargers system. To achieve the expected aims in flotation step, there are serious operational challenges such as: fast choking of the static mixers, boiling problem, burping phenomena and pulp ...
Read More
The flotation circuit in Sungun copper plant consists of two column flotation cells as cleaner, having fixed-spargers system. To achieve the expected aims in flotation step, there are serious operational challenges such as: fast choking of the static mixers, boiling problem, burping phenomena and pulp overflow to concentrate lander, maintenance and control problems. An attempt was exerted by implementing new helical static mixer in one of cleaner cells instead of old elliptical type to overcome the challenges. The changes resulted in proper performance of the column whereas burping phenomena due to choking was eliminated, finer bubbles were produced, and the boiling and overflow problems were solved. Also, the static mixers life time increased to 7 months in helical column cells from one month in elliptical column cells. In addition to 40% air consumption reduction and 20% solid percent increase in final product, the grade of Cu and Mo increased by helical static mixer replacement up to about 18.7% from 16.8% (11%) and to 511.1 ppm from 263 ppm (94%) in the cleaner step, respectively. Recovery of Cu and Mo were increased about 1.5% and 0.2%, respectively. Finally, the results proved the effectiveness of finer bubble generation on grade improvement is depend on minerals hydrophobicity as Mo grade increased more than Cu.