kausar Sultan shah; Naeem Abbas; Li Kegang; Mohd Hazizan bin Mohd Hashim; Hafeez Ur Rehman; Khan Gul Jadoon
Abstract
The rocks in the studied area are prone to deterioration and failure due to frequent exposure to extreme temperature variations and loading conditions. In the context of rock engineering reliability assessment, understanding the energy conversion process in rocks is critical. Therefore, this research ...
Read More
The rocks in the studied area are prone to deterioration and failure due to frequent exposure to extreme temperature variations and loading conditions. In the context of rock engineering reliability assessment, understanding the energy conversion process in rocks is critical. Therefore, this research work aims to assess the energy characteristics and failure modes of pink and white-black granite subjected to uniaxial compression loading at various temperatures. Samples of pink and white-black granite are heated to a range of temperatures (0 °C, 200 °C, 400 °C, 600 °C, 900 °C, and 1100 °C), and their failure modes and energy characteristics including total energy, elastic energy, and dissipated energy are studied by testing preheated samples under uniaxial compression. The results show that the dissipation energy coefficient initially rises rapidly, and then falls back to its minimum value at the failure stage. The micro-structures of granite rock directly affect its elastic and dissipation energy. Axial splitting failure mode is observed in most of the damaged granite specimens. After heating granite to 600 °C, the effect of temperature on the failure mode becomes apparent.
Kausar Sultan shah; Mohd Hazizan bin Mohd Hashim; Hafeez Ur Rehman; Kamar shah bin Ariffin
Abstract
The significance of rock failure can be found from the fact that microfracture genesis and coalescence in the rock mass results in macroscale fractures. Rock may fail due to an increase in the local stress, natural fractures, weathering inducing micro-crack genesis, coalescence, and propagation. Therefore, ...
Read More
The significance of rock failure can be found from the fact that microfracture genesis and coalescence in the rock mass results in macroscale fractures. Rock may fail due to an increase in the local stress, natural fractures, weathering inducing micro-crack genesis, coalescence, and propagation. Therefore, a comprehensive understanding of the micro-scale failure mechanism of various weathering grade sandstones based on micro-level observation and microstructure-based simulation is essential. The microscale failure response of various weathering grade sandstones is studied under the wet and dry cycles. Each sample is tested for the micro-structure and micro-fracture characteristics using the image analysis. Furthermore, the micrographs obtained are also used to create the microstructure-based models, which are then simulated in the ANSYS software. The findings indicate that the moderately weathered sandstones indicate less weight reduction than the slightly weathered sandstone. The results obtained also demonstrate that the wet and dry cycles have little effect on the particle shape and size. However, variation in the particle shape and size implies that this is a result of the prevailing interaction of rock and water particle. The microscale simulation reveal that both UCS and BTS decrease from 37 MPa to 19 MPa and 9 MPa to 4 MPa as the density of the micro-structure increases. The results reveal that the primary fracture deviation from the loading axis increases with increasing density in the micro-structural micro-structures, although this effect reduces with further increasing density in the micro-structures.
K. Sultan shah; M. H. bin Mohd Hashim; H. Rehman; K. S. bin Ariffin
Abstract
Indirect tensile testing is used in order to investigate the effect of particle morphology (shape and size) on the various weathering grade sandstone fracture characteristics. Several fracture characteristics are discussed in depth in this work including the fracture length (FL), fracture deviation area ...
Read More
Indirect tensile testing is used in order to investigate the effect of particle morphology (shape and size) on the various weathering grade sandstone fracture characteristics. Several fracture characteristics are discussed in depth in this work including the fracture length (FL), fracture deviation area (FDA), fracture angle (FA), and fracture maximum deviation distance (FMDD). A tabletop microscope (TTM) is used to measure the particle morphology. The image analysis techniques induce the uncertainty-related particle shape and size. Therefore, the Monte Carlo simulation (MCS) is used in order to incorporate the inherent uncertainties-related particle morphology. The results obtained reveal that the sandstone fracture angle presents an unclear relationship with the particle shape and size. The effect of particle size on FL is completely obvious, and FL increases with the particle size. In contrast, the particle shape and size have an unclear relationship with the fracture characteristics. Furthermore, the sandstone porosity affects the fracture characteristics, which increase with the weathering grade. Moreover, the findings reveal that the Monte Carlo simulation is a viable tool for integrating the inherent uncertainties associated with the particle shape and size.
K. Sultan Shah; I. Mithal Jiskani; N. Muhammad Shahani; H. Ur Rehman; N. Muhammad Khan; S. Hussain
Abstract
In the mining sector, the barrier to obtain an efficient safety management system is the unavailability of future information regarding the accidents. This paper aims to use the auto-regressive integrated moving average (ARIMA) model, for the first time, to evaluate the underlying causes that affect ...
Read More
In the mining sector, the barrier to obtain an efficient safety management system is the unavailability of future information regarding the accidents. This paper aims to use the auto-regressive integrated moving average (ARIMA) model, for the first time, to evaluate the underlying causes that affect the safety management system corresponding to the number of accidents and fatalities in the surface and underground mining in Pakistan. The original application of the ARIMA model provides that how the number of accidents and fatalities is influenced by the implementation of various approaches to promote an effective safety management system. The ARIMA model requires the data series of the predicted elements with a random pattern over time and produce an equation. After the model identification, it may forecast the future pattern of the events based on its existing and future values. In this research work, the accident data for the period of 2006-2019-is collected from Inspectorate of Mines and Minerals (Pakistan), Mine Workers Federation, and newspapers in order to evaluate the long-term forecast. The results obtained reveal that ARIMA (2, 1, 0) is a suitable model for both the mining accidents and the workers’ fatalities. The number of accidents and fatalities are forecasted from 2020 to 2025. The results obtained suggest that the policy-makers should take a systematic consideration by evaluating the possible risks associated with an increased number of accidents and fatalities, and develop a safe and effective working platform.