Exploitation
Alireza Afradi; Arash Ebrahimabadi
Abstract
Rock-fragmentation is generally regarded as a crucial indicator within the mining industry for evaluating the effects of blasting operations. In this work, a database was primarily constructed using field data to predict rock fragmentation in the mines of Anguran and Sarcheshmeh. The datasets comprised ...
Read More
Rock-fragmentation is generally regarded as a crucial indicator within the mining industry for evaluating the effects of blasting operations. In this work, a database was primarily constructed using field data to predict rock fragmentation in the mines of Anguran and Sarcheshmeh. The datasets comprised the input parameters such as Burden (m), spacing (m), powder factor (kg/m³), and stemming (m), with fragmentation (cm) as the output parameter. The analysis of these datasets was conducted using the Ant Lion Optimizer (ALO) and Crow Search Algorithm (CSA) methodologies. To assess the predictive models' accuracy, metrics including the coefficient of determination (R²), Variance Accounted For (VAF), and Root Mean Square Error (RMSE) were employed. The application of ALO and CSA to the database yielded results indicating that for ALO, R² = 0.99, RMSE = 0.005, and VAF (%) = 99.38, while for CSA, R² = 0.98, RMSE = 0.02, and VAF (%) = 98.11. Ultimately, the findings suggest that the predictive models yield satisfactory results, with ALO demonstrating a greater level of precision.
Rock Mechanics
Alireza Afradi; Arash Ebrahimabadi; Mansour Hedayatzadeh
Abstract
Tunnel Boring Machines (TBMs) are extensively used to excavate underground spaces in civil and tunneling projects. An accurate evaluation of their penetration rate is the key factor for the TBM performance prediction. In this study, artificial intelligence methods are used to predict the TBM penetration ...
Read More
Tunnel Boring Machines (TBMs) are extensively used to excavate underground spaces in civil and tunneling projects. An accurate evaluation of their penetration rate is the key factor for the TBM performance prediction. In this study, artificial intelligence methods are used to predict the TBM penetration rate in excavation operations in the Kerman tunnel and the Gavoshan water conveyance tunnels. The aim of this paper is to show the application of the Multivariate Linear Regression (MLR), Artificial Neural Network (ANN), and Support Vector Machine (SVM) for the TBM penetration rate prediction. The penetration rate parameter is considered as a dependent variable, and the Rock Quality Designation (RQD), Brazilian Tensile Strength (BTS), Uniaxial Compressive Strength (UCS), Density (D), Joint Angle (JA), Joint Spacing (JS), and Poisson's Ratio are considered as independent variables. The obtained results by the several proposed methods indicated a high accuracy between the predicted and measured penetration rates, but the support vector machine yields more precise and realistic outcomes.