Exploration
Mojtaba Bazargani Golshan; Mehran Arian; Peyman Afzal; Lili Daneshvar Saein; Mohsen Aleali
Abstract
The purpose of this research is application of the Concentration-Number and Concentration-Area fractal models for determining the distribution pattern of REEs and lithium in mining area of the North Kochakali coal deposit. According to the Concentration-Area and Concentration-Number fractal graphs, four ...
Read More
The purpose of this research is application of the Concentration-Number and Concentration-Area fractal models for determining the distribution pattern of REEs and lithium in mining area of the North Kochakali coal deposit. According to the Concentration-Area and Concentration-Number fractal graphs, four different geochemical groups were obtained for REEs and lithium in the mining area of North Kochakali coal deposit. The comparison of the threshold values and the models obtained based on the Concentration-Area and Concentration-Number fractal models indicate that the Concentration-Area Fractal model has performed better in determining different geochemical groups and separating anomalies from the background for REEs and lithium in North Kochakali coal deposit. Based on the fractal models in the mining area, the southeastern and western parts have the highest concentrations of REEs and the northeastern parts have the highest concentrations of lithium. These parts should be considered in mining operations due to their higher economic value. The locations of the REEs anomalies are consistent with the location of right-lateral faults with a normal component, since these faults are young and have operated after the formation of coal seams, so the mineralization of REEs in North Kochakali coal deposit is epigenetic.
Exploration
Mojtaba Bazargani Golshan; Mehran Arian; Peyman Afzal; Lili Daneshvar Saein; Mohsen Aleali
Abstract
The aim is to use the Concentration-Volume (C-V) fractal model to identify high-quality parts of coal seams based on sulfur and ash concentrations. In the K1 and K7 coal seams in the North Kochakali coal deposit, 5 and 6 different populations of ash and sulfur content were obtained based on the results. ...
Read More
The aim is to use the Concentration-Volume (C-V) fractal model to identify high-quality parts of coal seams based on sulfur and ash concentrations. In the K1 and K7 coal seams in the North Kochakali coal deposit, 5 and 6 different populations of ash and sulfur content were obtained based on the results. According to this model, sulfur and ash concentrations below 1.81% and 33.1% for the K7 seam, and below 4.46% and 37.1% for the K1 seam, respective base on Russian standard for ash and high sulfur content of North Kochakali coals were considered as appropriate values. In order to identify the high-quality parts of K1 and K7 coal seams, plans at different depths were used based on the C-V fractal model. Plans at different depths suggests that the southern part of the K1 seam and the northern part of the K7 seam have the highest-quality based on sulfur and ash concentrations, which should be considered in the extraction operation. The logratio matrix was used to compare the results of the C-V fractal model with the geological data of pyrite veins and coal ash. This matrix indicates that sulfur content above 3.8% for the K7 seam and above 4.41% for the K1 seam have good and very good correlation with pyritic veins of geological data, respectively. There are good overall accuracy (OA) values in the correlation between parts of the seam with ash concentration above 37.1% and 45.7% for the K1 and K7 seams, respectively, and the coal ash obtained from the geological data.