H. Shahriari; M. Honarmand; S. Mirzaei; A. Saffari
Abstract
This research work aims to discuss the methodology of using the drone-based data in the initial steps of the exploration program for the dimension stone deposits. A high-resolution imaging is performed by a low-cost commercial drone at the Emperador marble quarry, Kerman province, Iran. A ground resolution ...
Read More
This research work aims to discuss the methodology of using the drone-based data in the initial steps of the exploration program for the dimension stone deposits. A high-resolution imaging is performed by a low-cost commercial drone at the Emperador marble quarry, Kerman province, Iran. A ground resolution of 3 cm/pix is achieved by imaging at an altitude of 70 m in order to ensure the precise lithological and structural mapping. An accuracy of less than 5 cm is promised for the 3D photogrammetric products. Hence, the flight is performed with an 80% front and a 70% lateral image overlap. Furthermore, 18 ground control points (GCPs) are used in order to meet the required accuracy. Photogrammetric processing is done by the Agisoft PhotoScan software. The geology map is prepared through the visual geo-interpretation of the orthophoto image. The faults and fractures are delineated using the high-resolution orthophoto and hill-shade model in the ArcGIS software. Accordingly, the density map of fractures is produced, and the deposit is divided into five structural zones. The 3D deposit model with an accuracy of 2.8 cm is reconstructed based on the digital elevation model (DEM). A primary block model is generated using the 3D deposit model in the Datamine software in order to determine the resource for each structural zone. Finally, considering the amount of resource and situation of fractures, the priority of exploration for developing activities and appropriate methods is defined for each structural zone. The research work results have convinced us to include drone-based imagery in the initial steps of dimension stone exploration to consume the time and cost of the operation.
Exploitation
A. Saffari; M. Ataei; F. Sereshki
Abstract
Spontaneous combustion of coal is one of the most horrifying hazards in coal industries, especially in underground coal mines. Thus having a prior knowledge about the occurrence of this phenomenon in underground coal mines is of crucial importance in preventing this process, loss of life, huge economic ...
Read More
Spontaneous combustion of coal is one of the most horrifying hazards in coal industries, especially in underground coal mines. Thus having a prior knowledge about the occurrence of this phenomenon in underground coal mines is of crucial importance in preventing this process, loss of life, huge economic loss, and environmental pollution. The aim of this work is to determine the spontaneous combustion of coal potential in the Tabas Parvadeh coal mines in Iran in order to assess the effect of coal intrinsic characteristics on its occurrence. For the purpose of this investigation, the coal samples were collected from Parvadeh I to IV, and the coal intrinsic characteristics of the samples were tested. In order to determine the spontaneous combustion of coal propensity in this case study, the Crossing Point Temperature (CPT) test was used. Then the relation between the coal intrinsic characteristics and the CPT test values was determined. The results obtained showed that the B1 seam in Parvadeh II and C1 seam in Parvadeh III had a high potential of spontaneous combustion of coal potential. These results also show that an increase in the moisture, volatile matter, pyrite, vitrinite, and liptinite contents enhance the spontaneous combustion of coal tendency in these mines. The results obtained have major outcomes for the management of this phenomenon in the Tabas Parvadeh coal mines. Therefore, evaluation of the spontaneous combustion of coal hazards in coal mines should start in the first stage of design and carried on during their whole lifecycle, even after mine closure.
Exploitation
K. Ghanbari; M. Ataei; F. Sereshki; A. Saffari
Abstract
The presence of methane in coal mines is one of the major problems in underground coal mines. Every year, in underground coal mines, a lot of casualties due to outbursts and explosions of methane gas is occurring. Existence of this gas in the mines not only creates a difficult and dangerous situation ...
Read More
The presence of methane in coal mines is one of the major problems in underground coal mines. Every year, in underground coal mines, a lot of casualties due to outbursts and explosions of methane gas is occurring. Existence of this gas in the mines not only creates a difficult and dangerous situation for work but also makes it more expensive. The release of this gas to the air causes a further pollution of the atmosphere and increases the greenhouse gases in the air. Thus Coal Bed Methane (CBM) drainage before, during, and after coal mining is necessary. Accordingly, the CBM drainage can reduce the risks involved in these mines. In the past decade, CBM has offered a significant potential to meet the ever-growing energy demand and can decrease the disastrous events. In this research work, the CBM potential in Eastern Kelariz, Western Razmja, Bornaky, Bozorg, Razzi, and Takht coal mines of Eastern Alborz coal mines company is investigated using the rock engineering systems (RES) based on the intrinsic and geological parameters. Nine main parameters are considered for modeling CBM, and the interactions between these parameters are calculated by a proposed system. Based on the RES method, the parameters that are dominant (depth of cover) or subordinate (gas content) and also the parameters that are interactive are introduced. The proposed approach could be a simple but efficient tool in the evaluation of the parameters affecting CBM, and hence be useful in decision-making. The results obtained show that Razzi coal mine has a good potential to perform CBM drainage.