Mine Economic and Management
Sarina Akbari; Reza Ghezelbash; Hamidreza Ramazi; Abbas Maghsoudi
Abstract
Natural hazards, particularly landslides, have long posed significant threats to people, buildings, and the surrounding environment. Therefore, comprehensive planning for urban and rural development necessitates the development and implementation of landslide risk zoning models. Numerous methodologies ...
Read More
Natural hazards, particularly landslides, have long posed significant threats to people, buildings, and the surrounding environment. Therefore, comprehensive planning for urban and rural development necessitates the development and implementation of landslide risk zoning models. Numerous methodologies have been proposed for generating landslide hazard maps, which can potentially aid in predicting future landslide-prone areas. This study employed an integrated approach that combines statistical and multi-criteria decision-making (MCDM) methodologies. The Frequency Ratio (FR) and Analytical Hierarchy Process (AHP) were utilized as knowledge-driven approaches, while the Support Vector Machine (SVM) using an RBF kernel, a widely recognized machine learning algorithm, was applied as a data-driven method. Ten factors influencing landslides were considered, including slope angle, aspect, altitude, geology, land use, climate, erosion, and distances from rivers, faults, and roads. The results revealed that landslides are more predictable in the southern, southwestern, and central regions of the studied area. A quantitative assessment of the different methods using prediction-rate curves indicated that the SVM method outperformed the FR and AHP-FR approaches in identifying susceptible areas. The findings of this work could be effectively employed to mitigate potential future hazards and associated damages.
Exploration
Mobin Saremi; Abbas Maghsoudi; Reza Ghezelbash; mahyar yousefi; Ardeshir Hezarkhani
Abstract
Mineral prospectivity mapping (MPM) is a multi-step and complex process designed to narrow down the target areas for exploratory activities in subsequent stages. To pinpoint promising zones of porphyry copper mineralization in the Varzaghan district, NW Iran, various exploration evidence layers were ...
Read More
Mineral prospectivity mapping (MPM) is a multi-step and complex process designed to narrow down the target areas for exploratory activities in subsequent stages. To pinpoint promising zones of porphyry copper mineralization in the Varzaghan district, NW Iran, various exploration evidence layers were employed in alignment with the conceptual model of these deposits. These layers encompass fault density, proximity to intrusive rocks, multi-element geochemical anomalies, and distances to phyllic and argillic alterations. The geochemical anomaly maps, recognized as the most effective layers, were generated through staged factor analysis (SFA) and the geochemical mineralization probability index (GMPI). Other layers were weighted using a logistic function, and their values were transformed into 0 -1 interval. Ultimately, to integrate the weighted layers, the fuzzy gamma operator and the geometric average method were applied. The normalized density index and prediction-area (P-A) plot were employed to evaluate the MPM models. The findings indicate that the developed models possess considerable validity and can be effectively utilized for planning future exploration endeavors.