Seyed Ahmad Mousavi; Kaveh Ahangari; Kamran Goshtasbi
Abstract
Blast and stress release create cracks, fractures, and excavation damage zone in the remaining rock mass. Bench health monitoring (BHM) is crucial regarding bench health and safety in blast dynamic loading. Several empirical criteria have been proposed for a quick estimation of different parameters of ...
Read More
Blast and stress release create cracks, fractures, and excavation damage zone in the remaining rock mass. Bench health monitoring (BHM) is crucial regarding bench health and safety in blast dynamic loading. Several empirical criteria have been proposed for a quick estimation of different parameters of a rock mass in the zone damaged by the blast. This work estimates the rock mass properties behind the blast hole based on the generalized Hoek-Brown failure criterion and quantitative disturbance factor (D). Considering a constant D value, either zero or one, for the entire rock mass, remarkably alters its strength and stability, resulting in very optimistic or very conservative analyses. Therefore, D is considered based on the elastic damage theory, and numerical simulation is conducted based on the finite difference software FLAC to investigate the vibration and damage threshold by monitoring the peak particle velocity (PPV) in the bench domain with different geometries. According to the numerical simulation, as the depth behind the blast hole increases, the value of D decreases from one to zero almost non-linearly, resulting in a non-linear reduction in the Hoek-Brown behavioral model properties. It is found that using various parameters of rock mass in the blast-induced damage zone behind the hole leads to thoroughly different PPV values than the constant parameters. Accordingly, the approach to using the quantified values of parameter D is of great importance in the estimation of various properties of a rock mass in the blast-induced zone, as well as calculation of the vibration.
A. Ghanizadeh Zarghami; K. Shahriar; K. Goshtasbi; A. Akbari Dehkharghani
Abstract
Calculation of the specific charge and specific drilling before a blasting operation plays a significant role in the design of a blasting pattern and the reduction of the final extraction cost of minerals. In this work, the information from the Sungun, Miduk and Chah-Firouzeh copper mines in Iran was ...
Read More
Calculation of the specific charge and specific drilling before a blasting operation plays a significant role in the design of a blasting pattern and the reduction of the final extraction cost of minerals. In this work, the information from the Sungun, Miduk and Chah-Firouzeh copper mines in Iran was assessed, and it was found that there was a significant relationship between the specific charge and specific drilling and the hole diameter, bench height, uniaxial compressive strength and joint set orientation. After finding a technical and economic model to calculate the specific charge and specific drilling, this model was tested on the Sungun copper mine. Due to the insufficient consideration during the design of a blast pattern and because of the high hardness of the rocks in some parts of the mine, lots of destructive events such as boulders, back break, bench toe, high specific charge and high specific drilling, fly rock, and ground vibration in the blast operations were observed. The specific charge and specific drilling were found to be the most important technical and economic parameters involved in designing a blasting pattern, and they were found to play an important role in reducing the blasting cost. The blasting cost could be largely controlled by the accurate examination and computation of these parameters. An increase in the rock strength and the angle between the bench face and the main joint set would increase the specific charge and specific drilling. On the other hand, a specific charge and a specific drilling would decrease when the hole diameter increased in every range of the uniaxial compressive strength.
M. Zahiri; K. Goshtasbi; J. Khademi Hamidi; K. Ahangari
Abstract
There is a direct relationship between the efficiency of mechanized excavation in hard rocks and that of disc cutters. Disc cutter wear is an important effective factor involved in the functionality of tunnel boring machines. Replacement of disc cutters is a time-consuming and costly activity that can ...
Read More
There is a direct relationship between the efficiency of mechanized excavation in hard rocks and that of disc cutters. Disc cutter wear is an important effective factor involved in the functionality of tunnel boring machines. Replacement of disc cutters is a time-consuming and costly activity that can significantly reduce the TBM utilization and advance rate, and has a major effect on the total time and cost of the tunneling projects. When these machines bore through hard rocks, the cutter wear considerably affects the excavation process. To evaluate the performance of the cutters, first, it is essential to figure out how they operate the rock cutting mechanism; secondly, it is important to identify the key factors that cause the wear. In this work, we attempt to introduce a comprehensive numerical method for estimation of disc cutter wear. The field data including the actual cutter wear more than 1000 pieces and the geological parameters along the Kani-Sib transmission tunnel in the northwest of Iran are compiled in a special database that is subjected to a statistical analysis in order to reveal the genuine wear rule. The results obtained from the numerical method indicate that with an increase in the wear of disk cutter up to 25 mm, the applied normal and rolling forces can be multiplied by 2.9 and 2.7, respectively, and by passing the critical wear, the disk cutters lose their optimal performance. This method also shows that confining pressure will increase the wear of the disc cutter. By the proposed formulation, the cutter consumption rate can be predicted with a high accuracy.
Rock Mechanics
K. Bour; K. Goshtasbi
Abstract
The design of underground spaces is mainly carried out using empirical, analytical, and numerical methods. The convergence confinement method (CCM) is an analytical technique that is widely utilized in analyzing the stability of underground spaces. However, the main challenge in the stability analysis ...
Read More
The design of underground spaces is mainly carried out using empirical, analytical, and numerical methods. The convergence confinement method (CCM) is an analytical technique that is widely utilized in analyzing the stability of underground spaces. However, the main challenge in the stability analysis is the selection of an accurate constitutive model for rock mass, and particularly, its post-failure behavior. The existence of water plays a significant role in the stability analysis, whereas this effect is not usually considered in the CCM method. In this research work, a circular tunnel in a saturated medium is modelled and compared with its dry condition. Two types of constitutive models namely elastic perfectly plastic (EPP) and strain softening (SS) are used and compared in order to investigate the effect of water and post-failure behavior on the stability of tunnels. With this respect, the codes are written and incorporated in the constitutive models and various analyses are carried out. The results achieved from the analyses show that the elastic reaction of ground in the presence of water in both constitutive models are the same and that the ground reaction curves (GRCs) and longitudinal deformation profiles (LDPs) are similar. However, the trend of GRC is different in the case where the rock failure occurs and the face of the tunnel goes beyond 0.5D. According to the results obtained, the maximum displacement in a saturated medium with different K values for the SS model is more than that for the EPP model.
Rock Mechanics
S. Moshrefi; K. Shahriar; A. Ramezanzadeh; K. Goshtasbi
Abstract
A new failure criterion was presented to predict the ultimate strength of shale under the triaxial and polyaxial state of stress. A database containing 93 datasets was obtained from the results of the uniaxial, triaxial, polyaxial compressive tests, an indirect tensile test was collected from reliable ...
Read More
A new failure criterion was presented to predict the ultimate strength of shale under the triaxial and polyaxial state of stress. A database containing 93 datasets was obtained from the results of the uniaxial, triaxial, polyaxial compressive tests, an indirect tensile test was collected from reliable references, and this test was carried out on the shale samples taken from the southwestern oilfields in Iran. The database was used to evaluate the proposed criterion, and its accuracy was compared against the popular failure criteria in rock mechanics, particularly those used for stability analysis such as the Hoek-Brown, Mohr-Coulomb, Drucker-Prager, and Mogi-Coulomb failure criteria. In order to evaluate the model, seven important statistical indices were selected. Subsequently, curves from various failure criteria were fitted to the triaxial and polyaxial data, and the corresponding coefficients and statistical indices were determined. The results obtained indicated that, in all cases, compared to the other failure criteria, the proposed criterion succeeded to predict the ultimate strength at a higher accuracy. Also the proposed criterion was used calculate the uniaxial compressive and tensile strengths with a minimum error. For a further examination of the proposed criterion, a series of results from the triaxial test including the ductile failure data were utilized for evaluation of the applicability of the proposed criterion to the ductile zone. It showed that the criterion could predict the ultimate strength of shale over a wide range of stresses.
Rock Mechanics
E. Dadashi; A. Noorzad; K. Shahriar; K. Goshtasbi
Abstract
The utilization of the lining type in pressure tunnels is highly dependent on the geological and hydraulic conditions. There are two types of lining, namely concrete and steel lining but steel lining is one of the most expensive arrangements. To decrease the length of steel lining in these tunnels, the ...
Read More
The utilization of the lining type in pressure tunnels is highly dependent on the geological and hydraulic conditions. There are two types of lining, namely concrete and steel lining but steel lining is one of the most expensive arrangements. To decrease the length of steel lining in these tunnels, the concrete lining, which prevents water seepage from the surrounding rock mass, is the appropriate alternative. In this work, a special attention is devoted to limit water losses in the concrete lining of pressure tunnel based on the critical reinforcing ratio in concrete lining. In order to evaluate the effect of internal water pressure on the permeability coefficient variation of the concrete lining and the surrounding rock mass, some simulations of reinforced concrete lining is implemented in the ABAQUS finite element software based on the coupled pore fluid-stress analysis. The results obtained indicate that although the critical reinforcing ratio has an important role in capturing the seepage flows and water losses, it is not sufficient to rely only on this parameter. However, among the various influential factors involved, a suitable arrangement of the reinforcement in the concrete lining should also be considered.
Rock Mechanics
S. Moshrefi; K. Shahriar; A. Ramezanzadeh; K. Goshtasbi
Abstract
A rock failure criterion is very important for prediction of the ultimate strength in rock mechanics and geotechnics; it is determined for rock mechanics studies in mining, civil, and oil wellborn drilling operations. Also shales are among the most difficult to treat formations. Therefore, in this research ...
Read More
A rock failure criterion is very important for prediction of the ultimate strength in rock mechanics and geotechnics; it is determined for rock mechanics studies in mining, civil, and oil wellborn drilling operations. Also shales are among the most difficult to treat formations. Therefore, in this research work, using the artificial neural network (ANN), a model was built to predict the ultimate strength of shale, and comparison was made with support vector machine (SVM), multiple linear regression models, and the widely used conventional polyaxial failure criteria in the stability analysis of rock structures, Drucker-Prager, and Mogi-Coulomb. For building the model, the corresponding results of triaxial and polyaxial tests have been performed on shales by various researchers. They were collected from reliable published articles. The results obtained showed that a feed forward back propagation multi-layer perceptron (MLP) was used and trained using the Levenberg–Marquardt algorithm, and the 2-4-1 architecture with root-mean-square-error (RMSE) of 24.41 exhibits a better performance in predicting the ultimate strength of shale in comparison with the investigated models. Also for further validation, triaxial tests were performed on the deep shale specimens. They were prepared from the Ramshire oilfield in SW Iran. The results obtained were compared with ANN, SVM, multiple linear regression models, and the conventional failure criterion prediction. They showed that the ANN model predicted ultimate strength with a minimum error and RMSE being equal to 43.81. Then the model was used for prediction of the threshold broken pressure shale layer in the Gachsaran oilfield in Iran. For this, a vertical and horizontal stress was calculated based on a depth of shale layer. The threshold broken pressure was calculated for the beginning and ending of a shale layer to be 154.21 and 167.98 Mpa, respectively.