M. Shamsi; M. Noparast; Seyyed Z. Shafaie; M. Gharabaghi; S. Aslani
Abstract
Copper smelting slags are hard materials. Therefore,to recover their copper by flotation method, grinding should be carried out to obtain optimal particle size. Copper smelting slags in the Bardeskan district, with work index of 16.24 kwh/st, were grinded for 65 minutes to reach an acceptable degree ...
Read More
Copper smelting slags are hard materials. Therefore,to recover their copper by flotation method, grinding should be carried out to obtain optimal particle size. Copper smelting slags in the Bardeskan district, with work index of 16.24 kwh/st, were grinded for 65 minutes to reach an acceptable degree of freedom for the flotation tests, with particle size of 80%, smaller than 70 μm. With this grinding time, degree of freedom for copper-bearing minerals was achieved 85-90%. The floatation method performed and the procedure used for the optimization of the effective parameters were described in this paper. The results obtained for the flotation tests, carried out at the optimal conditions after grinding the slags (with a grinding time of65 minutes), showed 62.23% of copper recovery, while, by flotation of copper slags at optimal conditions after increasing the grinding time to 85 minutes (d80 = 48µ), the Cu recovery was increased to 79.89%.
Negar Saeidi; Dariush Azizi; Mohammad Noaparast; Soheila Aslani; R Ramadi
Abstract
In this paper, iron ore sample from the Chadormalu was investigated to determine some comminution properties. Chadormalu deposit is one of the largest iron ore mine in Iran, which is located in Yazd province. The representative ore sample contained 57%Fe, 0.9%P and 0.17%S. The sample was crushed; afterward, ...
Read More
In this paper, iron ore sample from the Chadormalu was investigated to determine some comminution properties. Chadormalu deposit is one of the largest iron ore mine in Iran, which is located in Yazd province. The representative ore sample contained 57%Fe, 0.9%P and 0.17%S. The sample was crushed; afterward, it was ground in various grinding times according to the Bond Ball mill approach to specify the work index values. Based on different grinding times and the obtained results, a new work index equation was then simulated through which grinding time was considered as the main variable. The relationships between work index, the work input and P80 were then concluded. In addition, the results of tests were then used to estimate the selection function parameter. A new equation was applied to determine energy efficiency which could be implemented for energy consumption calculation. Two equations for EB and EB/Elimit were then obtained, where EB is the efficiency of comminution, and the ELimit is the maximum limiting energy efficiency for particle fracture under compressive loading. These equations could estimate the parameters of the iron ore would be precisely estimated. Indeed, by means of work index value; some crushing and grinding characteristics of the taken sample were assessed by which comminution circuit would be designed much better.