Mineral Processing
Chol Ung Ryom; Kwang Hyok Pak; Il Chol Sin; Kwang Chol So
Abstract
Shaking table and flotation are often used in scheelite (CaWO4) beneficiation, and usually they are applied in sequence. In this paper, analysis of mineral movement have been investigated in shaking table in which pulp was conditioned with xanthate as a collector and fed, heavy scheelite was concentrated, ...
Read More
Shaking table and flotation are often used in scheelite (CaWO4) beneficiation, and usually they are applied in sequence. In this paper, analysis of mineral movement have been investigated in shaking table in which pulp was conditioned with xanthate as a collector and fed, heavy scheelite was concentrated, while heavy pyrite removed directly on the deck by the action of collector. Artificially mixed mineral with 1% scheelite and 2% pyrite was used in CFD simulations and experiments. Through CFD simulations, it was found that pyrite particles, which were hydrophobic by collector, were attached to the water-air interface and subjected to upward buoyancy, which increased the density difference between scheelite and pyrite particles and enabled the separation of both minerals in the shaking table. The experiment results showed that the concentrate grade in conventional table concentration was 23.5% WO3, the separation efficiency was 77.89%, while the concentrate grade of scheelite in the table concentration of xanthate presence was 65.0% WO3 and the separation efficiency was 80.88%. The combination of flotation in table with collector addition not only eliminated the flotation to remove pyrite after table but also resulted in a lower rate of scheelite loss.
Mineral Processing
A.R. Javadi
Abstract
Carnallite, with the chemical formula KMgCl3.6H2O, is a mineral that was first discovered in the Urals Mountains in Russia. The reverse flotation has been established for carnallite processing in the current decades, and the alkyl morpholine collector is used for the removal of NaCl from carnallite using ...
Read More
Carnallite, with the chemical formula KMgCl3.6H2O, is a mineral that was first discovered in the Urals Mountains in Russia. The reverse flotation has been established for carnallite processing in the current decades, and the alkyl morpholine collector is used for the removal of NaCl from carnallite using the reverse flotation. The carnallite processing method involves reverse flotation with the dodecyl morpholine collector, and then centrifugation and cold crystallization. In this research work, kimiaflot 619, as a new collector, is synthesized, and the bench-scale flotation shows that kimiaflot 619 reveals a better selectivity and affinity for the NaCl crystals at an acidic pH with a less collector dosages–only 1/2 of the Armoflot 619 collector. The flotation results indicate that the NaCl grade in carnallite concentrated by Armoflot 619 (200 g/t) is 2.86%, while the NaCl grade in carnallite concentrated by kimiaflot 619collector (100 g/t) is 2.75%. The frother’s stability of the Armoflot 619 collector after flotation is very high and uncontrollable, while kimiaflot 619 has solved this problem, and it is completely controllable.