[1]. Xu Wang., Wen Qing Qin., Fen Jiao., Liu Yang Dong., Jian Gen Guo., Jian Zhang., Cong-Ren Yang. (2022). Review of tungsten resource reserves, tungsten concentrate production and tungsten beneficiation technology in China. The Nonferrous Metals Society of China. 32, 2318−2338
[2]. B.V. Das., S.K. Nagesh., C.H.R.V.S., Sreenivas, T., Kundu, T., Angadi, S.I. (2023). A treatise on occurrence, beneficiation and plant practices of tungsten-bearing ores.Powder Technology, Vol 429
[3]. Xiaosheng Yang. (2018). Beneficiation studies of tungsten ores–a review. Minerals Engineering, 125, 111–119
[4]. Wang, Y. (2016). Beneficiation process optimization for a tungsten ore. China Tungsten Industry, 253(03), 37–40
[5]. (2023). Flotation chemistry of scheelite and its practice: A comprehensive review. Minerals Engineering, Vol 204, 2023
[6]. Wang Cong., Ren Shuai., Sun Wei., Wu Si-hui.,Tao Li-ming., Duan Yao., Wang Jian-jun., Gao Zhi-yong. (2021). Selective flotation of scheelite from calcite using a novel self-assembled collector [J]. Minerals Engineering, 171: 107120
[7]. Yao Wei., Li Mao-lin., Zhang Ming., Cui Rui., Shi Jia., Ning Jiang-feng. (2020). Decoupling the effects of solid and liquid phases in a Pb-water glass mixture on the selective flotation separation of scheelite from calcite [J]. Minerals Engineering, 154: 106423
[8]. Dong Liu-yang, Jiao Fen, Qin Wen-qing, Wei Qian. (2021). New insights into the depressive mechanism of citric acid in the selective flotation of scheelite from fluorite [J]. Minerals Engineering, 171: 107117
[9]. Foucaud Y., Filippov L., Filippova I., Badawi M. (2020). The challenge of tungsten skarn processing by froth flotation: A review [J]. Frontiers in Chemistry, 8: 230
[10]. Zuo, Z., Gao, Y. (2016). Research advances of the processing technologies for the wolframite - scheelite mixed ore in China.China Tungsten Industry. 31,253(03),41-45 (+54)
[11]. Huang et al. (2016). Recovery Technology of Poly-metallic Sulfide Ore in China's Tungsten Mines. China Tungsten Industry, 31,251(01),58-62+73
[12]. Sheng, X., et al. (2015). Experimental study on recovering copper in the mixed sulfide ore of a tungsten mine. China Tungsten Industry. 249 (05), 49–53
[13]. Wu, Y., Zhou, Y. (2015). Flotation technology experiments of a high sulphur Cu-Zn-WO3 poly-metallic ore. China Tungsten Industry. 245(01), 44–48
[14]. Dai, X. (2016). Experimental Study of a Low-Grade Tungsten Molybdenum Ore. China Tungsten Industry, 31, 252(02) 26–3
[15]. Barry A. Wills. (2016). Mineral Processing Technology. Mc Gill University, Montreal, Canada 233~235
[16]. Sarbast Ahmad Hamid., Pura Alfonso., Josep Oliva., Hernan Anticoi., Eduard Guasch., Carlos Homann Sampaio., Maite Garcia-Vallès., Teresa Escobet. (2019). Modeling the Liberation of Comminuted Scheelite Using Mineralogical Properties. Minerals, 9, 536
[17]. Anticoi, H., Guasch, E., Hamid, S.A., Oliva, J., Alfonso, P., Garcia-Valles, M., Bascompta, M., Sanmiquel, L., Escobet, T., Argelaguet, R. (2018). Breakage Function for HPGR: Mineral and Mechanical Characterization of Tantalum and Tungsten Ores. Minerals, 8, 170
[18]. M.T. Carvalho, E., Agante, F., Durao.(2007). Recovery of PET from packaging plastics mixtures by wet shaking table. Waste Management, 27, 1747–1754
[19]. Sivamoham., Forssberg., (1985). Principles of tabling. International Journal of Mineral Processing,15, 281—295
[20]. R.J. Manser., R. W.Barley., B.A.Wills.(1991). The Shaking Table Concentrator-the influence of operating conditions and table parameters on mineral separation-the development of a mathematical model for normal operating conditions. Minerals Engineering, Vol. 4, No.3/4, 369-381
[21]. Tucker, K., A.Lewis., P. Wood. (1991). Computer optimization of a shaking table. Minerals Engineering,Vol.4,No.3/4, 355-367
[22]. R. Razali.,T.J.Veasey. (1990). Statistical modeling of a shaking table separator. Minerals Engineering, Vol. 3, No.3/4, 287-294
[23]. S. Torno., J. Torano., M.Gent., M.Menendez., (2011). A study of hydrocyclone classification of coal fines by CFD modeling and laboratory tests. Minerals & Metallurgical Processing, May; 28, 2.
[24]. Gu Jun Wan et al. (2008). Solids concentration simulation of different size particles in a cyclone separator. Powder Technology. 183, (94–104)
[25]. Viduka, S., Feng, Y., Hapgood, K., Schwarz, P. (2013). CFD–DEM investigation of particle separations using a sinusoidal jigging profile. Adv. Powder Technol, 24, 473–481
[26]. Yunkai Xia, Felicia F. Peng, Eric Wolfe, 2007.CFD simulation of fine coal segregation and stratification in jigs. J. Miner.Process, 82, 164–176
[27]. M. Rudman., D.A. Paterson., K. Simic. (2013). Efficiency of raking in gravity thickeners. Advanced Powder Technology, 24, 473–48
[28]. M.R. Fatahi., A. Farzanegan., (2018). An analysis of multiphase flow and solids separation inside Knelson Concentrator based on four-way coupling of CFD and DEM simulation method. Minerals Engineering, 126, 130–144
[29]. Ananda Subramani Kannan., Klas Jareteg., Niels Christian Krieger Lassen., Jens Michael Carstensen., Michael Adsetts Edberg Hansen.,Flemming Dam,SrdjanSasic. (2017). Design and performance optimization of gravity tables using a combined CFD-DEM framework. Powder Technology, 318 423-440
[30]. Ozcan Yildirim Gulsoy., Ergin Gulcan. (2019). A new method for gravity separation: Vibrating table gravity concentrating. Separation and Purification Technology, Vol 211, 18, March. 124-134
[31]. P. Pavanello., P. Carrubba., N. Moraci. (2018). The determination of interface friction by means of vibrating table tests. Geo textiles and Geo membranes, Vol.46.No. 6. 830-835
[32]. Koh, P.T.L., Schwarz, M.P., Zhu, Y., Bourke, P., Peaker, R., Franzidis, J. (2003). Development of CFD models of mineral flotation cells. In Proceedings of the Third International Conference on Computational Fluid Dynamics in the Minerals and Process Industries, Melbourne, Australia, pp. 171–175
[33]. Guichao Wang., Anh V., Nguyen., Subhasish Mitra., J.B. Joshi., Graeme J. Jameson., Geoffrey M. Evans. (2016). A review of the mechanisms and models of bubble-particle detachment in froth flotation. Separation and Purification Technology,170, 155–172
[34]. Koh, P.T.L., M.P. Schwarz. (2006). CFD modeling of bubble–particle attachments in flotation cells. Minerals Engineering, 19, 619–626
[35]. Schelud K, A., Toshev, B.V., Bojadjiev, D.T. (1976). Attachment of particles to a liquid surface (capillary theory of flotation). Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phase,. 72, 2815–2828
[36]. Guichao Wang., Linhan Ge., Subhasish Mitra., Geoffrey M. Evans., J.B. Joshic., Songying Chen. (2018). A review of CFD modelling studies on the flotation process. Minerals Engineering, 127,153~177
[37]. Anh V. Nguyen. (2003). New method and equations for determining attachment tenacity and particle size limit in flotation. Int. J. Miner.Process, 68 167–182
[38]. Gardner, L. R., Woods, R. (1971). An electrochemical investigation of contact angle and floatation in the presence of alkyl xanthates, II. galena and pyrite surfaces. Aust.1. Chemistry, 30, 981-991
[39]. Jan Drzymala. (1994). Characterization of materials by Hallimond tube flotation. Part 2: maximum size of floating particles and contact angle. Int. J. Miner.Proces, 42, 153-167
[40]. Schulz, N.F. (1970). Separation efficiency. Trans. SME/AIME, 247 (Mar.), 81-87