Document Type : Original Research Paper
Authors
Faculty of Mining Engineering, Kim Chaek University of Technology
Abstract
Shaking table and flotation are often used in scheelite (CaWO4) beneficiation, and usually they are applied in sequence. In this paper, analysis of mineral movement have been investigated in shaking table in which pulp was conditioned with xanthate as a collector and fed, heavy scheelite was concentrated, while heavy pyrite removed directly on the deck by the action of collector. Artificially mixed mineral with 1% scheelite and 2% pyrite was used in CFD simulations and experiments. Through CFD simulations, it was found that pyrite particles, which were hydrophobic by collector, were attached to the water-air interface and subjected to upward buoyancy, which increased the density difference between scheelite and pyrite particles and enabled the separation of both minerals in the shaking table. The experiment results showed that the concentrate grade in conventional table concentration was 23.5% WO3, the separation efficiency was 77.89%, while the concentrate grade of scheelite in the table concentration of xanthate presence was 65.0% WO3 and the separation efficiency was 80.88%. The combination of flotation in table with collector addition not only eliminated the flotation to remove pyrite after table but also resulted in a lower rate of scheelite loss.
Keywords
Main Subjects