Exploitation
M. Hosseini; H. Madani; K. Shahriar
Abstract
The main purpose of this work is modeling the dispersion of the sarin gas in a subway station in a hypothetical scenario. The dispersion is modeled using the CFD approach. In the analysis of the environmental conditions of the underground spaces, the only factor that draws a distinction between a subway ...
Read More
The main purpose of this work is modeling the dispersion of the sarin gas in a subway station in a hypothetical scenario. The dispersion is modeled using the CFD approach. In the analysis of the environmental conditions of the underground spaces, the only factor that draws a distinction between a subway station and other spaces is the train piston effect. Therefore, the present research work models the sarin dispersion in the two general cases of with and without a train in the subway system. About 0.5 L of sarin is assumed to be released through the main air handling unit (AHU) of the station. The results obtained show that in the case with no train service in the station, after 20 minutes of sarin release, the concentration and dose of sarin in the station will be 8.9 mg/m3 and 80 mg minute/m3, respectively, and these values are highly dangerous and lethal, and would have severely adverse effects on many individuals, and lead to death. This is highly important, especially when the effect of ventilation chambers at the ground level is taken into consideration. The results obtained also show that the train piston effect reduces the concentration and dose of sarin in the station so that when train arrival at and departure from the station, the sarin dose considerably reduces to 25 mg min/m3 after the release, and contributes to lower casualties. Finally, the results obtained show that time is a key factor to save lives in the management of such incidents.
Exploration
V. Adjiski; D. Mirakovski; Z. Despodov; S. Mijalkovski
Abstract
Auxiliary ventilation of the blind development heading in underground mines is one of the most challenging work activities amongst mining underground operations. The auxiliary forcing ventilation system provides positive pressure, cooling, controlling gas layering, and removing diesel fumes and dust ...
Read More
Auxiliary ventilation of the blind development heading in underground mines is one of the most challenging work activities amongst mining underground operations. The auxiliary forcing ventilation system provides positive pressure, cooling, controlling gas layering, and removing diesel fumes and dust levels from development headings, stopes, and services facilities. The effectiveness of the auxiliary forcing ventilation system depends upon many system variables. Currently, no scientific models and calculations are available that can be used to estimate the optimal distance from the outlet of the auxiliary forcing ventilation system to the development heading in underground mines that can provide the most efficient ventilation close to the face of the heading. In this work, scenarios are developed and simulated with a validated CFD model inside the ANSYS Fluent software. In each scenario, the system parameters such as dead zone, mean age of air, and face velocity are calculated, which are later used in the optimization process. By examining these parameters at the development heading zone, we can quantify the effectiveness of the ventilation system and confirm that the system design meets the government regulations. This work is carried out using the k-epsilon realizable turbulent model inside the ANSYS Fluent software.
K.M. Tanguturi; R.S. Balusu
Abstract
It is necessary to obtain a fundamental understanding of the goaf gas flow patterns in longwall mine in order to develop optimum goaf gas drainage and spontaneous combustion (sponcom) management strategies. The best ventilation layout for a longwall underground mine should assist in goaf gas drainage ...
Read More
It is necessary to obtain a fundamental understanding of the goaf gas flow patterns in longwall mine in order to develop optimum goaf gas drainage and spontaneous combustion (sponcom) management strategies. The best ventilation layout for a longwall underground mine should assist in goaf gas drainage and further reduce the risk of sponcom in the goaf. Further, in the longwall panel, regulators are installed in the maingate (MG) seals to control the gas migration on the MG side and the mine operators frequently encountered with seals leakage problems leading to abnormal gas contents in the tube bundles. Extensive parametric studies were carried out to investigate the effects of ventilation layouts, regulators, and seals leakages on the goaf gas distribution using the Computational Fluid Dynamics (CFD) techniques. The results of various CFD simulations are presented and discussed in detail in this paper.