Exploration
Ajay Kumar
Abstract
Land use (LU) classification based on remote sensing images is a challenging task that can be effectively addressed using a learning framework. However, accurately classifying pixels according to their land use poses a significant difficulty. Despite advancements in feature extraction techniques, the ...
Read More
Land use (LU) classification based on remote sensing images is a challenging task that can be effectively addressed using a learning framework. However, accurately classifying pixels according to their land use poses a significant difficulty. Despite advancements in feature extraction techniques, the effectiveness of learning algorithms can vary considerably. In this study conducted in Talcher, Odisha, India, the researchers proposed the use of Artificial Neural Networks (ANNs) to classify land use based on a dataset collected by the Sentinel-2 satellite. The study focused on the Talcher region, which was divided into five distinct land use classes: coal area, built-up area, barren area, vegetation area, and waterbody area. By applying ANNs to the mining region of Talcher, the researchers aimed to improve the accuracy of land use classification. The results obtained from the study demonstrated an overall accuracy of 79.4%. This research work highlights the importance of utilizing remote sensing images and a learning framework to address the challenges associated with pixel-based land use classification. By employing ANNs and leveraging the dataset from the Sentinel-2 satellite, the study offers valuable insights into effectively classifying different land use categories in the Talcher region of India. The findings contribute to the advancement of techniques for accurate land use analysis, with potential applications in various fields such as urban planning, environmental monitoring, and resource management.
Seyed M. Pourhashemi; K. Ahangari; J. Hassanpour; Seyed M. Eftekhari
Abstract
Mechanized tunneling in rocks is based on fracture propagation and rock fragmentation under disc cutters. Rock chipping is an efficient kind of fragmentation process, while the grinding process may occur under special conditions. The cutter-head penetration is an appropriate parameter involved in order ...
Read More
Mechanized tunneling in rocks is based on fracture propagation and rock fragmentation under disc cutters. Rock chipping is an efficient kind of fragmentation process, while the grinding process may occur under special conditions. The cutter-head penetration is an appropriate parameter involved in order to distinguish between the chipping and grinding processes in rock cutting. In this work, the grinding and chipping processes are investigated in the Uma-Oya water conveyance tunnel in Sri Lanka. The Uma-Oya project is a water transfer, hydropower, and irrigation system in the SE part of the central highland region of Sri-Lanka. From a geological viewpoint, most parts of the tunnel route in the studied section consist of very strong and abrasive metamorphic rocks that potentially are susceptible to grinding occurrence during the boring process under disc cutters. In this work, firstly, data processing is performed in order to identify the boundary between chipping and grinding. Then the chipping and grinding processes are modeled using the practical numerical and artificial intelligent methods. In the numerical modeling stage, we try to make the modeling as realistic as possible. The results obtained from these modeling methods show that for the penetrations less than 3 mm/rev, the grinding process is dominant, and for the penetrations more than 3 mm/rev, rock chipping occurs. Also, in the numerical modeling, no significant fracture expansion is observed in the rock when the penetration is less than 3 mm/rev. Moreover, it can be seen in the numerical modeling of the chipping process that the propagated fractures come together and the chips are created.
Environment
H. Nikoogoftar; A. Hezarkhani
Abstract
In this paper, we aim to achieve two specific objectives. The first one is to examine the applicability of the Artificial Neural Networks (ANNs) technique in ore grade estimation. Different training algorithms and numbers of hidden neurons are applied to estimate Cu grade of borehole data in the hypogene ...
Read More
In this paper, we aim to achieve two specific objectives. The first one is to examine the applicability of the Artificial Neural Networks (ANNs) technique in ore grade estimation. Different training algorithms and numbers of hidden neurons are applied to estimate Cu grade of borehole data in the hypogene zone of porphyry copper-gold deposit, Masjed-Daghi, East Azerbaijan Province (Iran). The efficacy of ANNs in function-learning and estimation is compared with ordinary kriging (OK). As the kriging algorithms smooth the data, their applicability in the pre-processing of data for fractal analysis is not conducive. ANNs can be introduced as an alternative for this kind of problem. Secondly, we aim to delineate the potassic and phyllic alteration regions in the hypogene zone of Cu-Au porphyry deposit based on the estimation obtained by the ANNs and OK methods, and utilize the Concentration-Volume (C-V) fractal model. In this regard, at first, C-V log-log is generated based on the ANN results. The plots are then used to determine the Cu threshold values for the alteration zones. To investigate the correlation between the geological model and C-V fractal results, the log ratio matrix is applied. The results obtained show that Cu values less than 0.38% from ANNs have more overlapped voxels with phyllic alteration zone by an overall accuracy of 0.72. Spatial correlation between the potassic alteration zones resulting from 3D geological modeling and high concentration zones in C-V fractal model show that Cu values greater than 0.38% have more voxels overlapped with the potassic alteration zone by an overall accuracy of 0.76. Generally, the results obtained show that a combination of the ANNs and C-V fractal methods can be a suitable and robust tool for quantitative modeling of alteration zones instead of the qualitative methods.
Mineral Processing
S. Khoshjavan; K. Moshashaei; B. Rezai
Abstract
In this research work, the effects of flotation parameters on coking coal flotation combustible material recovery (CMR) were studied by the artificial neural networks (ANNs) method. The input parameters of the network were the pulp solid weight content, pH, collector dosage, frother dosage, conditioning ...
Read More
In this research work, the effects of flotation parameters on coking coal flotation combustible material recovery (CMR) were studied by the artificial neural networks (ANNs) method. The input parameters of the network were the pulp solid weight content, pH, collector dosage, frother dosage, conditioning time, flotation retention time, feed ash content, and rotor rotation speed. In order to select the most efficient model for this work, the outputs of different models were compared with each other. A five-layer ANN was found to be optimum with the architecture of 8, 15, 10, and 5 neurons in the input layer, and the first hidden, second hidden, and third hidden layers, respectively, as well one neurons in the output layer. In this work, the training, testing, validating, and data square correlation coefficients (R2) were achieved to be 0.995, 0.999, 0.999, and 0.998, respectively. The sensitivity analysis showed that the rotor speed and the solid weight content had the highest and lowest effects on CMR, respectively. It was verified that the predicted ANN values coincided very well with the experimental results.
Hassan Bakhsandeh Amnieh; Alireza Mohammadi; M Mozdianfard
Abstract
Ground vibrations caused by blasting are undesirable results in the mining industry and can cause serious damage to the nearby buildings and facilities; therefore, controlling such vibrations has an important role in reducing the environmental damaging effects. Controlling vibration caused by blasting ...
Read More
Ground vibrations caused by blasting are undesirable results in the mining industry and can cause serious damage to the nearby buildings and facilities; therefore, controlling such vibrations has an important role in reducing the environmental damaging effects. Controlling vibration caused by blasting can be achieved once peak particle velocity (PPV) is predicted. In this paper, the values of PPV have been predicted and compared using the artificial neural network (ANN), multivariate regression analysis (MVRA) and empirical relations. The necessary data were gathered from 11 blast operations in Sarcheshmeh copper mine, Kerman. The neural network input parameters include distance from blast point, maximum charge weight per delay, spacing, stemming and the number of drill-hole rows in each blasting operation. The network is of the multi-layer perception (MLP) type with 24 sets of training data including 2 hidden layers, 1 output layer with the network architecture of {5-11-12-1}, and Sigmoid tangent and linear transfer functions. To insure the training accuracy, the network was tested by 6 data sets; the determination coefficient and the average relative error were found to be 0.977 and 8.85%, respectively, showing the MLP network’s high capability and precision in estimating the values of the PPV. To predict these values, MVRA and empirical relations were analyzed. The results have revealed that these relations have low capability in estimating the PPV parameter.